cutlass/test/unit/epilogue/threadblock/epilogue_tensor_op.cu
Manish Gupta 1ac4559d12
Cutlass 2.6 Update 1 (#301)
* cutlass 2.6 update

* remove debug prints
2021-07-27 17:58:30 -07:00

3073 lines
83 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include <fstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/half.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/epilogue/thread/linear_combination_clamp.h"
#include "cutlass/gemm/warp/default_mma_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "testbed.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x64_64x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x64_32x32x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x128_64x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x64_64x32x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x128_32x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_32x128_32x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x32_64x32x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 32, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_256x128_64x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<256, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x256_64x64x32) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::int4b_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 32 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_64x64x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_32x3216) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 64 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x128_64x64x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_64x64x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x64_64x32x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 64 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_32x64x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_32x128_32x64x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x32_64x32x16) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = int8_t;
using ElementAccumulator = int;
using ElementCompute = float;
int const kElementsPerAccess = 64 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 32, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Element = ElementOutput;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise<
cutlass::sizeof_bits<Element>::value, 64>;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x64_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_256x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<256, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_32x32_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x64_64x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Mixed precision tests
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_256x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<256, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_32x32_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x64_64x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// F16 acumulation
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x64_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_256x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<256, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_32x32_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<32, 32, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x64_32x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x128_32x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x64_64x32x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = double;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_128x64_64x32x4) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = double;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_64x128_32x64x4) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = double;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_128x128_32x64x4) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = double;
using ElementAccumulator = double;
using ElementCompute = double;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Element = double;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM75_Epilogue_threadblock_epilogue, vec1_tensor_op_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_Epilogue_threadblock_epilogue, vec1_tensor_op_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using ElementOutput = float;
using ElementAccumulator = float;
using ElementCompute = float;
int const kElementsPerAccess = 1;
int const kPartitionsK = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Element = cutlass::half_t;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous<
cutlass::sizeof_bits<Element>::value, 64>;
using LayoutC = cutlass::layout::RowMajor;
using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
LayoutC>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////