cutlass/test/unit/epilogue/threadblock/epilogue_volta_tensor_op.cu
Manish Gupta 1ac4559d12
Cutlass 2.6 Update 1 (#301)
* cutlass 2.6 update

* remove debug prints
2021-07-27 17:58:30 -07:00

2890 lines
69 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include <fstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/half.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/warp/mma_tensor_op_sm70.h"
#include "cutlass/epilogue/warp/fragment_iterator_volta_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_thread_map_volta_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "testbed.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x64_64x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x128_32x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x64_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x64_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x256_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 256, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_256x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<256, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementC>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Mixed: F32 accumulation
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x64_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x256_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 256, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_256x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<256, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x128_32x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x64_64x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// F32 accumulation, F32 output
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x64_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x64_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x256_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 256, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_256x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<256, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x64_64x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x128_32x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// This works
TEST(SM70_Epilogue_threadblock_epilogue, vec8_f16_f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 8;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
// This works
TEST(SM70_Epilogue_threadblock_epilogue, vec2_f16_f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 2;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// This fails
TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_64x64_32x32x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<64, 64, 4>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 1;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_Epilogue_threadblock_epilogue, vec1_f32_volta_tensor_op_128x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = float;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 1;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_128x128_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 128, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 1;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_128x256_64x64x4) {
//
// Define the warp-level matrix multiply
//
using Shape = cutlass::gemm::GemmShape<128, 256, 4>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = float;
using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>;
using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = ElementC;
using ElementCompute = ElementC;
using Policy = cutlass::gemm::warp::MmaTensorOpPolicy<
cutlass::arch::Mma<
cutlass::gemm::GemmShape<16, 16, 4>,
32,
ElementA,
cutlass::layout::ColumnMajor,
ElementB,
cutlass::layout::RowMajor,
ElementC,
cutlass::layout::RowMajor,
cutlass::arch::OpMultiplyAdd
>,
cutlass::MatrixShape<1, 1>
>;
using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp<
WarpShape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
cutlass::layout::RowMajor,
Policy
>;
int const kPartitionsK = 1;
int const kElementsPerAccess = 1;
using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp<
Shape,
WarpShape,
kPartitionsK,
ElementC,
kElementsPerAccess,
ElementAccumulator>::Type;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
Shape,
WarpMmaTensorOp,
kPartitionsK,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
/////////////////////////////////////////////////////////////////////////////////////////////////