149 lines
5.0 KiB
C++
149 lines
5.0 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Reference implementation for GEMM in host-side code.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/coord.h"
|
|
#include "cutlass/matrix_traits.h"
|
|
#include "cutlass/tensor_view.h"
|
|
#include "cutlass/gemm/gemm_coord.h"
|
|
|
|
#include "tools/util/reference/device/thread/gemm.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace device {
|
|
namespace kernel {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
|
|
/// objects.
|
|
template <
|
|
typename TensorRefA,
|
|
typename TensorRefB,
|
|
typename TensorRefC,
|
|
typename ScalarType,
|
|
typename AccumulatorType,
|
|
typename OutputTile
|
|
>
|
|
__global__ void Gemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
ScalarType beta,
|
|
TensorRefC tensor_c,
|
|
AccumulatorType initial_accum) {
|
|
|
|
// Map each thread to a unique tile of the output matrix
|
|
MatrixCoord output_coord(
|
|
(threadIdx.x + blockIdx.x * blockDim.x) * OutputTile::kW,
|
|
(threadIdx.y + blockIdx.y * blockDim.y) * OutputTile::kH
|
|
);
|
|
|
|
// Compute the general matrix product
|
|
thread::Gemm<
|
|
TensorRefA,
|
|
TensorRefB,
|
|
TensorRefC,
|
|
ScalarType,
|
|
AccumulatorType,
|
|
OutputTile
|
|
> gemm(initial_accum);
|
|
|
|
gemm.multiply_add(
|
|
problem_size,
|
|
tensor_a,
|
|
tensor_b,
|
|
output_coord);
|
|
|
|
gemm.epilogue(problem_size, alpha, beta, tensor_c, output_coord);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
|
|
/// objects.
|
|
template <
|
|
typename TensorRefCollectionA,
|
|
typename TensorRefCollectionB,
|
|
typename TensorRefCollectionC,
|
|
typename ScalarType,
|
|
typename AccumulatorType,
|
|
typename OutputTile
|
|
>
|
|
__global__ void BatchedGemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefCollectionA tensor_collection_a,
|
|
TensorRefCollectionB tensor_collection_b,
|
|
ScalarType beta,
|
|
TensorRefCollectionC tensor_collection_c,
|
|
AccumulatorType initial_accum) {
|
|
|
|
// Obtain batch ID
|
|
int batch_id = blockIdx.z;
|
|
|
|
// Dereference based on batch_id
|
|
typename TensorRefCollectionA::TensorRef tensor_a = tensor_collection_a.at(batch_id);
|
|
typename TensorRefCollectionB::TensorRef tensor_b = tensor_collection_b.at(batch_id);
|
|
typename TensorRefCollectionC::TensorRef tensor_c = tensor_collection_c.at(batch_id);
|
|
|
|
// Map each thread to a unique tile of the output matrix
|
|
MatrixCoord output_coord(
|
|
(threadIdx.x + blockIdx.x * blockDim.x) * OutputTile::kW,
|
|
(threadIdx.y + blockIdx.y * blockDim.y) * OutputTile::kH
|
|
);
|
|
|
|
// Compute the general matrix product
|
|
thread::Gemm<
|
|
typename TensorRefCollectionA::TensorRef,
|
|
typename TensorRefCollectionB::TensorRef,
|
|
typename TensorRefCollectionC::TensorRef,
|
|
ScalarType,
|
|
AccumulatorType,
|
|
OutputTile
|
|
> gemm(initial_accum);
|
|
|
|
gemm.multiply_add(
|
|
problem_size,
|
|
tensor_a,
|
|
tensor_b,
|
|
output_coord);
|
|
|
|
gemm.epilogue(problem_size, alpha, beta, tensor_c, output_coord);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace kernel
|
|
} // namespace device
|
|
} // namespace reference
|
|
} // namespace cutlass
|