cutlass/include/cutlass/gemm/kernel/static_tile_scheduler.hpp
2024-10-17 12:11:02 -07:00

503 lines
18 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/fast_math.h"
#include "cutlass/gemm_coord.hpp"
#include "cutlass/kernel_hardware_info.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cute/layout.hpp"
#include "cute/tensor.hpp"
#include "cute/arch/cluster_sm90.hpp"
#include "cutlass/pipeline/pipeline.hpp"
namespace cutlass::gemm::kernel::detail {
///////////////////////////////////////////////////////////////////////////////
// Users are not supposed to use this class directly.
// This is a CRTP base class for the actual tile schedulers.
template<class Subclass>
class StaticPersistentTileScheduler {
private:
uint64_t current_work_linear_idx_;
uint64_t total_grid_size_;
public:
struct WorkTileInfo {
int32_t M_idx = 0;
int32_t N_idx = 0;
int32_t L_idx = 0;
bool is_valid_tile = false;
CUTLASS_HOST_DEVICE
bool
is_valid() const {
return is_valid_tile;
}
CUTLASS_HOST_DEVICE
static WorkTileInfo
invalid_work_tile() {
return {-1, -1, -1, false};
}
CUTLASS_HOST_DEVICE
bool
is_final_split(uint32_t k_tiles_per_output_tile) const {
return true;
}
CUTLASS_HOST_DEVICE
int32_t
reduction_subtile_idx() const {
return -1;
}
};
using Params = PersistentTileSchedulerSm90Params;
using RasterOrder = typename Params::RasterOrder;
using RasterOrderOptions = typename Params::RasterOrderOptions;
static constexpr bool IsDynamicPersistent = false;
public:
struct Arguments {
int max_swizzle_size = 1;
RasterOrderOptions raster_order = RasterOrderOptions::Heuristic;
};
template <class ProblemShapeMNKL, class TileShape, class ClusterShape>
static Params
to_underlying_arguments(
ProblemShapeMNKL problem_shape_mnkl,
TileShape tile_shape,
ClusterShape cluster_shape,
[[maybe_unused]] KernelHardwareInfo const& hw_info,
Arguments const& arguments,
[[maybe_unused]] void* workspace=nullptr,
[[maybe_unused]] const uint32_t epilogue_subtile = 1,
[[maybe_unused]] uint32_t ktile_start_alignment_count = 1u) {
// We only need the tile and cluster shape during scheduler setup, so let FTAD do the magic
static_assert(cute::is_static<TileShape>::value);
static_assert(cute::is_static<ClusterShape>::value);
dim3 problem_blocks = get_tiled_cta_shape_mnl(problem_shape_mnkl, tile_shape, cluster_shape);
Params params;
params.initialize(
problem_blocks,
to_gemm_coord(cluster_shape),
hw_info,
arguments.max_swizzle_size,
arguments.raster_order
);
return params;
}
CUTLASS_HOST_DEVICE
static bool
can_implement(Arguments const& args) {
return args.max_swizzle_size >= 1;
}
CUTLASS_HOST_DEVICE
StaticPersistentTileScheduler() { }
CUTLASS_DEVICE explicit StaticPersistentTileScheduler(Params const& params_) : scheduler_params(params_) {
// MSVC requires protecting use of CUDA-specific nonstandard syntax,
// like blockIdx and gridDim, with __CUDA_ARCH__.
#if defined(__CUDA_ARCH__)
if (params_.raster_order_ == RasterOrder::AlongN) {
current_work_linear_idx_ = uint64_t(blockIdx.x) + uint64_t(blockIdx.y) * uint64_t(gridDim.x);
}
else {
current_work_linear_idx_ = uint64_t(blockIdx.x) * uint64_t(gridDim.y) + uint64_t(blockIdx.y);
}
total_grid_size_ = uint64_t(gridDim.x) * uint64_t(gridDim.y) * uint64_t(gridDim.z);
#else
CUTLASS_ASSERT(false && "This line should never be reached");
#endif
}
// Returns the initial work tile info that will be computed over
template <class ClusterShape>
CUTLASS_DEVICE
WorkTileInfo
initial_work_tile_info(ClusterShape cluster_shape) {
return get_current_work();
}
CUTLASS_DEVICE
WorkTileInfo
get_current_work() const {
return get_current_work_for_linear_idx(current_work_linear_idx_);
}
CUTLASS_DEVICE
WorkTileInfo
get_current_work_for_linear_idx(uint64_t linear_idx) const {
if (linear_idx >= scheduler_params.blocks_per_problem_) {
return WorkTileInfo::invalid_work_tile();
}
// Map worker's linear index into the CTA tiled problem shape to the corresponding MNL indices
uint64_t work_idx_l, remainder;
scheduler_params.divmod_batch_(work_idx_l, remainder, linear_idx);
uint64_t blk_per_grid_dim = scheduler_params.divmod_cluster_shape_minor_.divide(remainder);
auto [work_idx_m, work_idx_n] = Subclass::get_work_idx_m_and_n(blk_per_grid_dim,
scheduler_params.divmod_cluster_shape_major_,
scheduler_params.divmod_cluster_shape_minor_,
scheduler_params.divmod_cluster_blk_major_,
scheduler_params.log_swizzle_size_,
scheduler_params.raster_order_);
return {work_idx_m, work_idx_n, static_cast<int32_t>(work_idx_l), true};
}
CUTLASS_DEVICE
void
advance_to_next_work(uint32_t advance_count = 1) {
current_work_linear_idx_ += total_grid_size_ * uint64_t(advance_count);
}
CUTLASS_DEVICE
bool is_last_tile(WorkTileInfo& work_tile_info, uint32_t advance_count = 1) const {
if (continue_current_work(work_tile_info)) {
return false;
}
return not get_current_work_for_linear_idx(
current_work_linear_idx_ + (total_grid_size_ * uint64_t(advance_count))
).is_valid();
}
// Computes the linear index within a batch given M and N tile offsets within the batch.
// This essentially inverts the mapping performed in get_work_idx_m_and_n
static CUTLASS_DEVICE
uint64_t
get_linear_idx_from_m_and_n(
int32_t tile_m,
int32_t tile_n,
FastDivmodU64Pow2 const& divmod_cluster_shape_major,
FastDivmodU64Pow2 const& divmod_cluster_shape_minor,
FastDivmodU64 const& divmod_cluster_blk_major,
int32_t log_swizzle_size,
RasterOrder raster_order) {
uint64_t minor_work_idx, major_work_idx, cluster_minor_offset;
if (raster_order == RasterOrder::AlongN) {
minor_work_idx = static_cast<uint64_t>(tile_m);
major_work_idx = static_cast<uint64_t>(tile_n);
uint64_t cluster_m = divmod_cluster_shape_minor.divide(tile_m) * divmod_cluster_shape_minor.divisor;
cluster_minor_offset = tile_m - cluster_m;
}
else {
major_work_idx = static_cast<uint64_t>(tile_m);
minor_work_idx = static_cast<uint64_t>(tile_n);
uint64_t cluster_n = divmod_cluster_shape_minor.divide(tile_n) * divmod_cluster_shape_minor.divisor;
cluster_minor_offset = tile_n - cluster_n;
}
uint64_t cluster_idx_minor, cluster_idx_major, cluster_major_offset;
cluster_idx_minor = divmod_cluster_shape_minor.divide(minor_work_idx - cluster_minor_offset);
divmod_cluster_shape_major(cluster_idx_major, cluster_major_offset, major_work_idx);
uint64_t cluster_idx_minor_div_swizzle = cluster_idx_minor >> log_swizzle_size;
uint64_t offset = cluster_idx_minor & ((1 << log_swizzle_size) - 1);
uint64_t extra = cluster_idx_minor_div_swizzle * divmod_cluster_blk_major.divisor + cluster_idx_major;
uint64_t cluster_id = (extra << log_swizzle_size) | offset;
return (cluster_id * divmod_cluster_shape_major.divisor + cluster_major_offset) * divmod_cluster_shape_minor.divisor + cluster_minor_offset;
}
// Given the inputs, computes the total number of output blocks over which this problem will compute.
// Note that this is only the logical size of our grid, not the physical grid we will actually launch.
template<class ProblemShapeMNKL, class BlockShape, class ClusterShape>
CUTLASS_HOST_DEVICE static
dim3
get_tiled_cta_shape_mnl(ProblemShapeMNKL problem_shape_mnkl, BlockShape cta_shape, ClusterShape cluster_shape) {
auto cta_m = cute::size(cute::ceil_div(cute::shape<0>(problem_shape_mnkl), cute::shape<0>(cta_shape)));
auto cta_n = cute::size(cute::ceil_div(cute::shape<1>(problem_shape_mnkl), cute::shape<1>(cta_shape)));
return Params::get_tiled_cta_shape_mnl(
to_gemm_coord(problem_shape_mnkl),
to_gemm_coord(cluster_shape),
cta_m, cta_n
);
}
// Reloaded interface that receives WorkTileInfo to deduce next work.
// Kernel helper function to get next work tile
CUTLASS_DEVICE
auto
fetch_next_work(WorkTileInfo work_tile_info) {
if (continue_current_work(work_tile_info)) {
return cute::make_tuple(work_tile_info, true);
}
advance_to_next_work();
return cute::make_tuple(get_current_work(), true);
}
// Given the inputs, computes the total number of output blocks over which this problem will compute.
// Note that this is only the logical size of our grid, not the physical grid we will actually launch.
template<class ProblemShapeMNKL, class TileShape, class AtomThrShape, class ClusterShape>
CUTLASS_HOST_DEVICE static
dim3
get_tiled_cta_shape_mnl(ProblemShapeMNKL problem_shape_mnkl,
TileShape tile_shape_mnk,
AtomThrShape atom_thr_shape_mnk,
ClusterShape cluster_shape_mnk) {
auto [tiles_m, tiles_n, tiles_l] = product_each(ceil_div(select<0,1,3>(problem_shape_mnkl), take<0,2>(tile_shape_mnk)));
auto cta_m = round_nearest(tiles_m * size<0>(atom_thr_shape_mnk), size<0>(cluster_shape_mnk));
auto cta_n = round_nearest(tiles_n * size<1>(atom_thr_shape_mnk), size<1>(cluster_shape_mnk));
return Params::get_tiled_cta_shape_mnl(
to_gemm_coord(problem_shape_mnkl),
to_gemm_coord(cluster_shape_mnk),
cta_m, cta_n
);
}
CUTLASS_DEVICE
static auto
work_tile_to_cta_coord(WorkTileInfo work_tile_info) {
// Get every cta coord in three dimensions of the cluster
auto [cta_m_in_cluster, cta_n_in_cluster, cta_l_in_cluster] = cute::block_id_in_cluster();
return make_coord(
work_tile_info.M_idx + static_cast<int32_t>(cta_m_in_cluster),
work_tile_info.N_idx + static_cast<int32_t>(cta_n_in_cluster),
_,
work_tile_info.L_idx + static_cast<int32_t>(cta_l_in_cluster)
);
}
CUTLASS_DEVICE
static auto
work_tile_to_cta_coord(WorkTileInfo work_tile_info, dim3 block_id_in_cluster) {
// Get every cta coord in three dimensions of the cluster
auto [cta_m_in_cluster, cta_n_in_cluster, cta_l_in_cluster] = block_id_in_cluster;
return make_coord(
work_tile_info.M_idx + static_cast<int32_t>(cta_m_in_cluster),
work_tile_info.N_idx + static_cast<int32_t>(cta_n_in_cluster),
_,
work_tile_info.L_idx + static_cast<int32_t>(cta_l_in_cluster)
);
}
// Given the inputs, computes the physical grid we should launch.
template<class ProblemShapeMNKL, class BlockShape, class ClusterShape>
CUTLASS_HOST_DEVICE static
dim3
get_grid_shape(
[[maybe_unused]] Params const& params,
ProblemShapeMNKL problem_shape_mnk,
BlockShape cta_shape,
ClusterShape cluster_shape,
KernelHardwareInfo hw_info,
Arguments arguments = Arguments{},
bool truncate_by_problem_size=true) {
auto problem_shape_mnkl = cute::append<4>(problem_shape_mnk, cute::Int<1>{});
dim3 problem_blocks = get_tiled_cta_shape_mnl(problem_shape_mnkl, cta_shape, cluster_shape);
return Params::get_grid_shape(
problem_blocks,
to_gemm_coord(cluster_shape),
hw_info,
arguments.max_swizzle_size,
arguments.raster_order,
/* truncate_by_problem_size = */true
);
}
// Given the inputs, computes the physical grid we should launch.
template<class ProblemShapeMNKL, class TileShape, class AtomThrShape, class ClusterShape>
static dim3
get_grid_shape(
Params const& params,
ProblemShapeMNKL problem_shape_mnkl,
TileShape tile_shape_mnk,
AtomThrShape atom_thr_shape_mnk,
ClusterShape cluster_shape_mnk,
KernelHardwareInfo hw_info) {
dim3 problem_blocks = get_tiled_cta_shape_mnl(problem_shape_mnkl, tile_shape_mnk, atom_thr_shape_mnk, cluster_shape_mnk);
Arguments args{};
if constexpr (!std::is_const_v<decltype(args.max_swizzle_size)>) {
args.max_swizzle_size = 1 << params.log_swizzle_size_;
}
args.raster_order = params.raster_order_ == RasterOrder::AlongN ? RasterOrderOptions::AlongN : RasterOrderOptions::AlongM;
return Params::get_grid_shape(
problem_blocks,
to_gemm_coord(cluster_shape_mnk),
hw_info,
args.max_swizzle_size,
args.raster_order,
/* truncate_by_problem_size = */true
);
}
// Convert CTA-level work tile info to cluster-level tile coord
CUTLASS_DEVICE
auto
work_tile_to_cluster_coord_mnkl(WorkTileInfo work_tile_info) const {
// TileScheduler works at CTA-level, kernel works at cluster-level
int m_coord = idx2crd(work_tile_info.M_idx / scheduler_params.cluster_shape_m_,
scheduler_params.problem_tiles_m_);
int n_coord = idx2crd(work_tile_info.N_idx / scheduler_params.cluster_shape_n_,
scheduler_params.problem_tiles_n_);
int l_coord = idx2crd(work_tile_info.L_idx,
scheduler_params.problem_tiles_l_);
return make_coord(m_coord, n_coord, _, l_coord);
}
// Returns whether the block assigned this work should compute the epilogue for the corresponding
// output tile. For the basic tile scheduler, this is always true.
CUTLASS_HOST_DEVICE
static bool
compute_epilogue(WorkTileInfo const&, Params const&) {
return true;
}
CUTLASS_HOST_DEVICE
static bool
compute_epilogue(WorkTileInfo const&) {
return true;
}
// Performs the reduction across splits for a given output tile. Since this scheduler does
// not split output tiles, no reduction is needed.
template <class FrgTensorC>
CUTLASS_DEVICE
static void
fixup(Params const&, WorkTileInfo const&, FrgTensorC&, uint32_t, uint32_t) {}
// Performs the reduction across splits for a given output tile. No fixup is required for
// work units returned by this scheduler.
template <class FrgTensorC>
CUTLASS_DEVICE
void
fixup(WorkTileInfo const&, FrgTensorC&, uint32_t, uint32_t) const { }
// Returns whether the current WorkTileInfo passed in should continue to be used. Since
// this scheduler only schedules work in units of single, full output tiles, the WorkTileInfo
// passed in should not be used after having been processed.
CUTLASS_DEVICE
static bool
continue_current_work(WorkTileInfo&) {
return false;
}
template <class ProblemShapeMNKL, class TileShape, class Shape>
CUTLASS_DEVICE
auto
get_k_tile_iterator(WorkTileInfo const& work_tile_info, ProblemShapeMNKL problem_shape_MNKL, TileShape tile_shape, Shape) {
auto k_tiles = cute::ceil_div(cute::get<2>(problem_shape_MNKL), cute::get<2>(tile_shape));
return cute::make_coord_iterator(k_tiles);
}
template <class ProblemShape, class TileShape>
CUTLASS_HOST_DEVICE
static int
get_work_k_tile_count(WorkTileInfo const& work_tile_info, ProblemShape problem_shape, TileShape tile_shape) {
// All work units returned by this scheduler cover the entire K iteration
// space of the output tile assigned to the work unit.
return cute::size(cute::ceil_div(cute::get<2>(problem_shape), cute::get<2>(tile_shape)));
}
CUTLASS_HOST_DEVICE
static uint32_t
get_work_k_tile_start(WorkTileInfo const&) {
// All work units returned by this scheduler start from K tile 0
return 0u;
}
CUTLASS_DEVICE
static bool
need_separate_reduction(Params const& params) {
return false;
}
CUTLASS_DEVICE
bool
is_work_tile_for_reduction(WorkTileInfo const& work_tile_info, Params const& params) {
return false;
}
template <class FrgTensorC>
CUTLASS_DEVICE
void
separate_reduction(
Params const& params,
WorkTileInfo const& work_tile_info,
FrgTensorC& accumulators,
uint32_t num_barriers,
uint32_t barrier_idx) {
}
// Shares the accumulator set with peers in the global workspace
template <class FrgTensorC>
CUTLASS_DEVICE
static void
share(
Params const& params,
WorkTileInfo const& work_tile_info,
FrgTensorC& accumulators,
uint32_t num_barriers,
uint32_t barrier_idx) {
}
CUTLASS_DEVICE
static bool
valid_warpgroup_in_work_tile(WorkTileInfo const& work_tile_info) {
return true;
}
CUTLASS_DEVICE
static bool
requires_separate_reduction(Params const& params) {
return false;
}
public:
// Sink scheduler params as a member
Params scheduler_params;
};
} // namespace cutlass::gemm::kernel::detail