
* Updates for 3.2.1 release. * Minor fix in gemm op profiler for raster order. * Add scheduler mapping for raster order in the kernels.
23 lines
961 B
Markdown
23 lines
961 B
Markdown
# Examples of using the CUTLASS Python interface
|
|
|
|
* [00_basic_gemm](/examples/python/00_basic_gemm.ipynb)
|
|
|
|
Shows how declare, configure, compile, and run a CUTLASS GEMM using the Python interface
|
|
|
|
* [01_epilogue](/examples/python/01_epilogue.ipynb)
|
|
|
|
Shows how to fuse elementwise activation functions to GEMMs via the Python interface
|
|
|
|
* [02_pytorch_extension_grouped_gemm](/examples/python/02_pytorch_extension_grouped_gemm.ipynb)
|
|
|
|
Shows how to declare, compile, and run a grouped GEMM operation via the Python interface,
|
|
along with how the emitted kernel can be easily exported to a PyTorch CUDA extension.
|
|
|
|
* [03_basic_conv2d](/examples/python/03_basic_conv2d.ipynb)
|
|
|
|
Shows how to declare, configure, compile, and run a CUTLASS Conv2d using the Python interface
|
|
|
|
* [04_epilogue_visitor](/examples/python/04_epilogue_visitor.ipynb)
|
|
|
|
Shows how to fuse elementwise activation functions to GEMMs via the Python Epilogue Visitor interface
|