
* Updates for 3.2.1 release. * Minor fix in gemm op profiler for raster order. * Add scheduler mapping for raster order in the kernels.
628 lines
15 KiB
C++
628 lines
15 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Define basic numeric operators
|
|
|
|
This is inspired by the Standard Library's <functional> header.
|
|
*/
|
|
/*
|
|
Note: CUTLASS 3x increases the host compiler requirements to C++17. However, certain
|
|
existing integrations of CUTLASS require C++11 host compilers.
|
|
|
|
Until this requirement can be lifted, certain headers with this annotation are required
|
|
to be remain consistent with C++11 syntax.
|
|
|
|
C++11 compatibility is enforced by `cutlass_test_unit_core_cpp11`.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/half.h"
|
|
#include "cutlass/tfloat32.h"
|
|
#include "cutlass/bfloat16.h"
|
|
|
|
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
#include <mma.h>
|
|
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
#ifdef _MSC_VER
|
|
// Provides support for alternate operators such as 'and', 'or', ...
|
|
#include <iso646.h>
|
|
#endif // _MSC_VER
|
|
|
|
namespace cutlass {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct absolute_value_op {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs) const {
|
|
return abs(lhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct absolute_value_op<float> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs) const { return fabs(lhs); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct plus {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs += rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct minus {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs -= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct multiplies {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs *= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct scale {
|
|
T const scaling_factor_;
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
scale(float scaling_factor) : scaling_factor_(scaling_factor) {
|
|
}
|
|
|
|
T operator()(T const &rhs) const {
|
|
T result = rhs * scaling_factor_;
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
|
/// Partial specializations needed when __CUDA_NO_HALF2_OPERATORS__ is set
|
|
template<>
|
|
struct plus<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hadd2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct minus<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hsub2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct multiplies<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hmul2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
/// Partial specializations needed when __CUDA_NO_HALF_OPERATORS__ is set
|
|
template<>
|
|
struct plus<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hadd(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct minus<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hsub(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct multiplies<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hmul(lhs, rhs);
|
|
}
|
|
};
|
|
#endif // defined(__CUDA_ARCH__)
|
|
|
|
|
|
/// Squares with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct square {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Returns the magnitude squared of an element.
|
|
template <typename T, typename Output = T>
|
|
struct magnitude_squared {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Computes the square of a difference with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct square_difference {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs, T rhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs) - Output(rhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Computes the square of a difference with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct magnitude_squared_difference {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs, T rhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs) - Output(rhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Divides
|
|
template <typename T>
|
|
struct divides {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs /= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
/// Negate
|
|
template <typename T>
|
|
struct negate {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs) const {
|
|
return -lhs;
|
|
}
|
|
};
|
|
|
|
/// Greater equal
|
|
template <typename T>
|
|
struct greater_equal {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs >= rhs);
|
|
}
|
|
};
|
|
|
|
/// Greater
|
|
template <typename T>
|
|
struct greater {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs > rhs);
|
|
}
|
|
};
|
|
|
|
/// Less equal
|
|
template <typename T>
|
|
struct less_equal {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs <= rhs);
|
|
}
|
|
};
|
|
|
|
/// Less
|
|
template <typename T>
|
|
struct less {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs < rhs);
|
|
}
|
|
};
|
|
|
|
template <typename T, bool PropogateNaN = false>
|
|
struct maximum {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs < rhs ? rhs : lhs);
|
|
}
|
|
};
|
|
|
|
// Maximum with nan propogation
|
|
// To propgate the NANs, the "max" of a two element that contains NaNs should also return a NaN
|
|
template <typename T>
|
|
struct maximum<T, true> {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return lhs > rhs or isnan(lhs) ? lhs : rhs;
|
|
#else
|
|
return lhs > rhs or std::isnan(lhs) ? lhs : rhs;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct maximum<float, false> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const &lhs, float const &rhs) const {
|
|
return fmaxf(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct maximum<float, true> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const lhs, float const rhs) const {
|
|
float res;
|
|
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
asm volatile("max.NaN.f32 %0, %1, %2;\n" : "=f"(res) : "f"(lhs), "f"(rhs));
|
|
#elif defined(__CUDA_ARCH__)
|
|
res = lhs > rhs or isnan(lhs) ? lhs : rhs;
|
|
#else
|
|
res = lhs > rhs or std::isnan(lhs) ? lhs : rhs;
|
|
#endif
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using maximum_with_nan_propogation = maximum<T, true>;
|
|
|
|
template <typename T, bool PropogateNaN = false>
|
|
struct minimum{
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
return (rhs < lhs ? rhs : lhs);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct minimum<T, true> {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return lhs < rhs or isnan(lhs) ? lhs : rhs;
|
|
#else
|
|
return lhs < rhs or std::isnan(lhs) ? lhs : rhs;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct minimum<float, false> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const &lhs, float const &rhs) const {
|
|
return fminf(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template <typename T, bool PropogateNaN = false>
|
|
struct maximum_absolute_value {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(T const &lhs, T const &rhs) const {
|
|
absolute_value_op<T> abs_op;
|
|
maximum<T, PropogateNaN> max_op;
|
|
|
|
return max_op(abs_op(lhs), abs_op(rhs));
|
|
}
|
|
};
|
|
|
|
// assumes the left operand is already an absolute value
|
|
template <typename T, bool PropogateNaN = false>
|
|
struct maximum_absolute_value_reduction {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(T const &lhs, T const &rhs) const {
|
|
absolute_value_op<T> abs_op;
|
|
maximum<T, PropogateNaN> max_op;
|
|
|
|
return max_op(lhs, abs_op(rhs));
|
|
}
|
|
};
|
|
|
|
/// Fused multiply-add
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct multiply_add {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
return C(a) * C(b) + c;
|
|
}
|
|
};
|
|
|
|
/// Fused multiply-add
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct multiply_add_relu0 {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
maximum<C> mx;
|
|
return mx(C(a) * C(b) + c, C(0));
|
|
}
|
|
};
|
|
|
|
/// Fused multiply-add
|
|
template <typename T>
|
|
struct and_add {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b, T const &c) const {
|
|
return ((a & b) + c);
|
|
}
|
|
};
|
|
|
|
|
|
/// Fused multiply-add
|
|
template <typename T>
|
|
struct xor_add {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b, T const &c) const {
|
|
return ((a ^ b) + c);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct conjugate {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a) const {
|
|
return a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct first {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const & first, T const &...) const {
|
|
return first;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct logical_and {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return ((a && b) ? T(1) : T());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct logical_or {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return ((a || b) ? T(1) : T());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct logical_not {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a) const {
|
|
return T(!(a));
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct bit_and {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a & b;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_or {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a | b;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_not {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a) const {
|
|
return ~a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_xor {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a ^ b;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/// Atomic reductions
|
|
|
|
template <typename T>
|
|
struct atomic_add
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(T *ptr, const T &data)
|
|
{
|
|
#if defined(__CUDA_ARCH__)
|
|
atomicAdd(ptr, data);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct atomic_add<double>
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(double *ptr, const double &data)
|
|
{
|
|
#if !defined(__CUDA_ARCH__)
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(data);
|
|
#elif (__CUDA_ARCH__ >= 600)
|
|
atomicAdd(ptr, data);
|
|
#else
|
|
// Use CAS loop
|
|
unsigned long long int* ptr_int = reinterpret_cast<unsigned long long int*>(ptr);
|
|
unsigned long long int old_int = *ptr_int;
|
|
unsigned long long int assumed_int;
|
|
|
|
do {
|
|
double update = data + __longlong_as_double(old_int);
|
|
assumed_int = old_int;
|
|
old_int = atomicCAS(ptr_int, assumed_int, __double_as_longlong(update));
|
|
} while (assumed_int != old_int);
|
|
#endif // (__CUDA_ARCH__ >= 600)
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct atomic_add<half2>
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(half2 *ptr, const half2 &data)
|
|
{
|
|
#if !defined(__CUDA_ARCH__) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 600))
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(data);
|
|
#else
|
|
// Vector-2 atomic reduction requires .target sm_60 or higher
|
|
uint32_t word = reinterpret_cast<const uint32_t&>(data);
|
|
asm volatile ("red.gpu.global.add.noftz.f16x2 [%0], %1;\n" : : "l"(ptr), "r"(word));
|
|
#endif // (__CUDA_ARCH__ >= 600)
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using red [[deprecated("use atomic_add instead")]] = atomic_add<T>;
|
|
|
|
template <typename T>
|
|
struct atomic_maximum {
|
|
CUTLASS_DEVICE
|
|
T operator()(T *ptr, T value) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return atomicMax(ptr, value);
|
|
#else
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(value);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
return 0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct atomic_maximum<float> {
|
|
CUTLASS_DEVICE
|
|
float operator()(float *ptr, float value) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return !signbit(value) ?
|
|
__int_as_float(atomicMax((int*)ptr, __float_as_int(value))) :
|
|
__uint_as_float(atomicMin((unsigned int*)ptr, __float_as_uint(value)));
|
|
#else
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(value);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
return 0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Partial specializations for nvcuda::wmma::fragment<Use, m, n, k, T, Layout>
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
template<typename Use, int m, int n, int k, typename T, typename Layout>
|
|
struct plus<nvcuda::wmma::fragment<Use, m, n, k, T, Layout>>
|
|
{
|
|
using Fragment = nvcuda::wmma::fragment<Use, m, n, k, T, Layout>;
|
|
using ElementType = typename Fragment::element_type;
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Fragment operator()(Fragment const &lhs, Fragment const &rhs) const
|
|
{
|
|
Fragment result;
|
|
plus<ElementType> scalar_op;
|
|
|
|
ElementType *result_elts = reinterpret_cast<ElementType*>(&result);
|
|
const ElementType *lhs_elts = reinterpret_cast<const ElementType*>(&lhs);
|
|
const ElementType *rhs_elts = reinterpret_cast<const ElementType*>(&rhs);
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Fragment::num_elements; i++) {
|
|
result_elts[i] = scalar_op(lhs_elts[i], rhs_elts[i]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|