cutlass/test/unit/gemm/warp/gemm_sm90.cu
ANIKET SHIVAM 4575443d44
CUTLASS 3.2 (#1024)
* CUTLASS 3.2
2023-08-07 20:50:32 -04:00

205 lines
8.9 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM with Hopper FP64
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/half.h"
#include "cutlass/gemm/warp/default_mma_tensor_op.h"
#include "cutlass/core_io.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "testbed.h"
#if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED)
TEST(SM90_warp_gemm_tensor_op_congruous_f64, 16x16x4_16x16x4_16x8x4) {
using Shape = cutlass::gemm::GemmShape<16, 16, 4>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<16, 16, 4> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x16x4_32x16x4_16x8x4) {
using Shape = cutlass::gemm::GemmShape<32, 16, 4>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<32, 16, 4> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x32x4_32x32x4_16x8x4) {
using Shape = cutlass::gemm::GemmShape<32, 32, 4>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<32, 32, 4> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x64x4_32x64x4_16x8x4) {
using Shape = cutlass::gemm::GemmShape<32, 64, 4>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b;
using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<32, 64, 4> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 16x16x16_16x16x16_16x8x4) {
using Shape = cutlass::gemm::GemmShape<16, 16, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<16, 16, 16> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 32x32x16_32x32x16_16x8x4) {
using Shape = cutlass::gemm::GemmShape<32, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<32, 32, 16> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 64x32x16_64x32x16_16x8x4) {
using Shape = cutlass::gemm::GemmShape<64, 32, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<64, 32, 16> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 32x64x16_32x64x16_16x8x4) {
using Shape = cutlass::gemm::GemmShape<32, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>;
using Element = double;
using ElementC = double;
using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise;
using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise;
using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC,
cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type;
test::gemm::warp::Testbed<MmaTensorOp,
cutlass::gemm::GemmShape<32, 64, 16> >()
.run();
}
////////////////////////////////////////////////////////////////////////////////
#endif // if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED)