cutlass/test/unit/layout/tensor_nhwc.cu
ANIKET SHIVAM 66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00

215 lines
6.9 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief unit tests for NHWC tensor layout
*/
#include "../common/cutlass_unit_test.h"
#include "cutlass/layout/tensor.h"
#include "cutlass/util/device_memory.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace layout {
void test_nhwc_layout(int n_size, int h_size, int w_size, int c_size) {
int ldc = c_size + 1;
int ldw = ldc * (w_size + 2);
int ldh = ldw * (h_size + 3);
typedef cutlass::layout::TensorNHWC Tensor;
Tensor::Stride tensor_stride({ ldc, ldw, ldh });
Tensor tensor_nhw_packed_c(tensor_stride);
// test pointer offset
for (int n_idx = 0; n_idx < n_size; n_idx++) {
for (int p_idx = 0; p_idx < h_size; p_idx++) {
for (int q_idx = 0; q_idx < w_size; q_idx++) {
for (int c_idx = 0; c_idx < c_size; c_idx++) {
cutlass::Tensor4DCoord tensor_coord(n_idx, p_idx, q_idx, c_idx);
auto ptr_offset = tensor_nhw_packed_c(tensor_coord);
decltype(ptr_offset) reference_offset = c_idx +
q_idx * ldc +
p_idx * ldw +
n_idx * ldh;
EXPECT_EQ(ptr_offset, reference_offset);
}
}
}
}
// test stride
auto stride = tensor_nhw_packed_c.stride();
EXPECT_EQ(stride, tensor_stride);
// test capacity
auto capacity = tensor_nhw_packed_c.capacity(
cutlass::Tensor4DCoord(n_size, h_size, w_size, c_size));
decltype(capacity) referece_capacity = ldh * n_size;
EXPECT_EQ(capacity, referece_capacity);
}
__global__ void test_nhwc_inverse(
int *output, int n_size, int h_size, int w_size, int c_size) {
int ldc = c_size;
int ldw = ldc * w_size;
int ldh = ldw * h_size;
typedef cutlass::layout::TensorNHWC Tensor;
Tensor::Stride tensor_stride({ ldc, ldw, ldh });
Tensor tensor_nhw_packed_c(tensor_stride);
for (int n_idx = 0; n_idx < n_size; n_idx++) {
for (int p_idx = 0; p_idx < h_size; p_idx++) {
for (int q_idx = 0; q_idx < w_size; q_idx++) {
cutlass::Tensor4DCoord tensor_coord(n_idx, p_idx, q_idx, threadIdx.x);
int ptr_offset = tensor_nhw_packed_c(tensor_coord);
cutlass::Tensor4DCoord inv_coord = tensor_nhw_packed_c.inverse(ptr_offset);
output[ptr_offset] = tensor_nhw_packed_c(inv_coord);
}
}
}
}
class TestTensorNHWC {
public:
//
// Data members
//
//
// Methods
//
/// Ctor
TestTensorNHWC() {
}
/// Runs the test
void run(int n_size, int h_size, int w_size, int c_size) {
size_t size = n_size * h_size * w_size * c_size;
/// Device memory containing output
cutlass::device_memory::allocation< int > output(size);
int *output_host = (int *)malloc(sizeof(int) * size);
dim3 grid(1,1);
dim3 block(c_size, 1, 1);
test::layout::test_nhwc_inverse<<< grid, block >>>(output.get(),
n_size, h_size, w_size, c_size);
cudaError_t result = cudaDeviceSynchronize();
ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);
//
// Verify output
//
cutlass::device_memory::copy_to_host(output_host, output.get(), size);
result = cudaGetLastError();
ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);
for (int n_idx = 0; n_idx < n_size; n_idx++) {
for (int p_idx = 0; p_idx < h_size; p_idx++) {
for (int q_idx = 0; q_idx < w_size; q_idx++) {
for (int c_idx = 0; c_idx < c_size; c_idx++) {
int reference_offset = c_idx +
q_idx * c_size +
p_idx * (c_size * w_size) +
n_idx * (c_size * w_size * h_size);
EXPECT_EQ(output_host[reference_offset], reference_offset);
}
}
}
}
}
};
} // namespace layout
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Layout_TensorNHWC, NHWC_1_16_8_32) {
int n_size = 1;
int h_size = 16;
int w_size = 8;
int c_size = 32;
test::layout::test_nhwc_layout(n_size, h_size, w_size, c_size);
test::layout::TestTensorNHWC test_nhwc;
test_nhwc.run(n_size, h_size, w_size, c_size);
}
TEST(Layout_TensorNHWC, NHWC_2_16_8_32) {
int n_size = 2;
int h_size = 16;
int w_size = 8;
int c_size = 32;
test::layout::test_nhwc_layout(n_size, h_size, w_size, c_size);
test::layout::TestTensorNHWC test_nhwc;
test_nhwc.run(n_size, h_size, w_size, c_size);
}
TEST(Layout_TensorNHWC, NHWC_2_16_8_128) {
int n_size = 2;
int h_size = 16;
int w_size = 8;
int c_size = 128;
test::layout::test_nhwc_layout(n_size, h_size, w_size, c_size);
test::layout::TestTensorNHWC test_nhwc;
test_nhwc.run(n_size, h_size, w_size, c_size);
}
TEST(Layout_TensorNHWC, NHWC_4_8_16_128) {
int n_size = 4;
int h_size = 8;
int w_size = 16;
int c_size = 128;
test::layout::test_nhwc_layout(n_size, h_size, w_size, c_size);
test::layout::TestTensorNHWC test_nhwc;
test_nhwc.run(n_size, h_size, w_size, c_size);
}
/////////////////////////////////////////////////////////////////////////////////////////////////