cutlass/test/unit/nvrtc/kernel/thread/contraction.hpp
ANIKET SHIVAM 4575443d44
CUTLASS 3.2 (#1024)
* CUTLASS 3.2
2023-08-07 20:50:32 -04:00

128 lines
5.2 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "cute/tensor.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
namespace nvrtc {
namespace thread {
template<
typename ElementA, typename ElementB, typename ElementC,
typename TileShape, typename ClusterShape,
bool kTransA, bool kTransB,
int RANK_M, int RANK_N, int RANK_K, int RANK_L
>
struct ContractionKernel {
using ElementScalar = float;
using ElementAccum = float;
using EpilogueThread = cutlass::epilogue::thread::LinearCombination<ElementC,
1,
ElementAccum,
ElementScalar>;
static constexpr cute::GMMA::Major majorA = ! kTransA ? cute::GMMA::Major::MN : cute::GMMA::Major::K;
static constexpr cute::GMMA::Major majorB = ! kTransB ? cute::GMMA::Major::K : cute::GMMA::Major::MN;
/// Kernel config
typedef int64_t stride_type;
typedef int32_t extent_type;
static constexpr const stride_type* stride_null = nullptr;
static constexpr const extent_type* extent_null = nullptr;
template <int Rank, bool IsMajor, class Indexable>
static constexpr
auto
make_stride_tuple(Indexable const& t, int n, int64_t init_default = 0) {
static_assert(Rank > 1);
if constexpr (IsMajor) {
return cute::transform(cute::make_seq<Rank>{}, [&](auto i) {
if constexpr (i == 0) {
return cute::Int<1>{};
}
else {
return i < n ? t[i] : init_default;
}
});
}
else {
return cute::make_int_tuple<Rank>(t, n, init_default);
}
}
using StrideA = decltype(cute::make_stride(
make_stride_tuple<RANK_M, majorA == cute::GMMA::Major::MN>(stride_null, 0, 0),
make_stride_tuple<RANK_K, majorA == cute::GMMA::Major::K>(stride_null, 0, 0),
cute::make_int_tuple<RANK_L>(stride_null, 0, 0)));
using StrideB = decltype(cute::make_stride(
make_stride_tuple<RANK_N, majorB == cute::GMMA::Major::MN>(stride_null, 0, 0),
make_stride_tuple<RANK_K, majorB == cute::GMMA::Major::K>(stride_null, 0, 0),
cute::make_int_tuple<RANK_L>(stride_null, 0, 0)));
using StrideC = decltype(cute::make_stride(
cute::make_int_tuple<RANK_M>(stride_null, 0, 0),
cute::make_int_tuple<RANK_N>(stride_null, 0, 0),
cute::make_int_tuple<RANK_L>(stride_null, 0, 0)));
using ProblemShape = decltype(cute::make_shape(
cute::make_int_tuple<RANK_M>(extent_null, 0, 0),
cute::make_int_tuple<RANK_N>(extent_null, 0, 0),
cute::make_int_tuple<RANK_K>(extent_null, 0, 0),
cute::make_int_tuple<RANK_L>(extent_null, 0, 0)));
using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementA, StrideA, 16 / sizeof(ElementA),
ElementB, StrideB, 16 / sizeof(ElementB),
ElementAccum,
TileShape, ClusterShape, cutlass::gemm::collective::StageCountAuto,
cutlass::gemm::KernelTmaWarpSpecialized
>::CollectiveOp;
using EpilogueOutputOp = cutlass::epilogue::collective::DefaultEpilogue<StrideC, StrideC, EpilogueThread, cutlass::gemm::EpilogueDefault>;
using CollectiveEpilogue = cutlass::epilogue::collective::detail::Sm90TmaWarpSpecializedAdapter<EpilogueOutputOp>;
using Kernel = cutlass::gemm::kernel::GemmUniversal<
ProblemShape,
CollectiveOp,
CollectiveEpilogue>;
};
} // namespace nvrtc
} // namespace thread