cutlass/include/cute/atom/copy_traits_sm90_tma.hpp
ANIKET SHIVAM d572cc1aab
CUTLASS 3.1 (#915)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-04-14 23:19:34 -04:00

974 lines
38 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#if !defined(__CUDACC_RTC__)
#include <cuda.h>
#endif
#include <cute/arch/copy_sm90_desc.hpp>
#include <cute/arch/copy_sm90_tma.hpp>
#include <cute/tensor.hpp>
#include <cute/atom/copy_traits.hpp>
#include <cute/atom/copy_atom.hpp>
namespace cute
{
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// TMA_LOAD ///////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
struct SM90_TMA_LOAD_OP : SM90_TMA_LOAD {};
// The executable SM90_TMA_LOAD with tma_desc and tma_mbar
template <class NumBits>
struct Copy_Traits<SM90_TMA_LOAD_OP, NumBits>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD arguments
TmaDescriptor const& tma_desc_;
uint64_t& tma_load_mbar_;
template <class Coord, int... Is>
CUTE_HOST_DEVICE constexpr
void
copy_unpack_(void const* const dst_ptr,
Coord const& src_coord, seq<Is...>) const
{
#if 0
print("THR (%d,%d,%d) BLK (%d,%d,%d)\n",
threadIdx.x, threadIdx.y, threadIdx.z,
blockIdx.x, blockIdx.y, blockIdx.z);
print(" TMA Coord "); print(src_coord); print("\n");
print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_),
uint64_t(tma_desc_.size1_),
uint64_t(tma_desc_.size2_),
uint64_t(tma_desc_.size3_))); print("\n");
#endif
SM90_TMA_LOAD::copy(&tma_desc_,
tma_load_mbar_,
dst_ptr,
get<Is>(src_coord)...);
}
// This is the copy_unpack dispatch for this Copy_Traits
// Src needs to be a gmem tensor with TmaCoordIterator .data()
// Dst needs to be a smem tensor
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr
void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
//static_assert(is_gmem<TS>::value, "Expected gmem src for SM90_TMA_LOAD"); // TMA spoofed src tensor
static_assert(is_smem<TD>::value, "Expected smem dst for SM90_TMA_LOAD");
traits.copy_unpack_(dst.data().get(), src.data().coord_, tuple_seq<decltype(src.data().coord_)>{});
}
};
// The non-executable SM90_TMA_LOAD with tma_desc and no tma_mbar
// Use .with(tma_mbar) to construct an executable version
template <class NumBits, class GmemStrides>
struct Copy_Traits<SM90_TMA_LOAD, NumBits, GmemStrides>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD arguments
TmaDescriptor tma_desc_;
GmemStrides g_stride_;
// Return TmaDescriptor/TensorMap
CUTE_HOST_DEVICE constexpr
TmaDescriptor const*
get_tma_descriptor() const {
return &tma_desc_;
}
// Construct an executable SM90_TMA_LOAD with tma_mbar
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_TMA_LOAD_OP, NumBits>
with(uint64_t& tma_mbar, uint16_t const& multicast_mask = 0) const {
// We accept multicast_mask here to keep the API for both atoms consistent
// assert(multicast_mask == 0);
(void) multicast_mask;
return {tma_desc_, tma_mbar};
}
// Generate the TMA coord tensor
template <class GShape>
CUTE_HOST_DEVICE constexpr
auto
get_tma_tensor(GShape const& g_shape) const {
static_assert(is_congruent<decltype(g_shape), decltype(g_stride_)>::value);
constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value;
return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat<tma_rank>(Int<0>{}))),
g_shape,
g_stride_);
}
// Don't try to execute a copy with SM90_TMA_LOAD before calling .with()
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst) = delete;
};
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// TMA_LOAD_MULTICAST /////////////////////////////
//////////////////////////////////////////////////////////////////////////////
struct SM90_TMA_LOAD_MULTICAST_OP : SM90_TMA_LOAD_MULTICAST {};
template <class NumBits>
struct Copy_Traits<SM90_TMA_LOAD_MULTICAST_OP, NumBits>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD_MULTICAST arguments
TmaDescriptor const& tma_desc_;
uint64_t& tma_load_mbar_;
uint16_t const& multicast_mask_;
template <class Coord, int... Is>
CUTE_HOST_DEVICE constexpr
void
copy_unpack_(void const* const dst_ptr,
Coord const& src_coord, seq<Is...>) const
{
#if 0
print("THR (%d,%d,%d) BLK (%d,%d,%d)\n",
threadIdx.x, threadIdx.y, threadIdx.z,
blockIdx.x, blockIdx.y, blockIdx.z);
print(" TMA Coord "); print(src_coord); print("\n");
print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_),
uint64_t(tma_desc_.size1_),
uint64_t(tma_desc_.size2_),
uint64_t(tma_desc_.size3_))); print("\n");
#endif
SM90_TMA_LOAD_MULTICAST::copy(&tma_desc_,
tma_load_mbar_,
multicast_mask_,
dst_ptr,
get<Is>(src_coord)...);
}
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr
void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
//static_assert(is_gmem<TS>::value, "Expected gmem src for SM90_TMA_LOAD"); // TMA spoofed src tensor
static_assert(is_smem<TD>::value, "Expected smem dst for SM90_TMA_LOAD_MULTICAST");
traits.copy_unpack_(dst.data().get(), src.data().coord_, tuple_seq<decltype(src.data().coord_)>{});
}
};
template <class NumBits, class GmemStrides>
struct Copy_Traits<SM90_TMA_LOAD_MULTICAST, NumBits, GmemStrides>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD_MULTICAST arguments
TmaDescriptor tma_desc_;
GmemStrides g_stride_;
// Return TmaDescriptor/TensorMap
CUTE_HOST_DEVICE constexpr
TmaDescriptor const*
get_tma_descriptor() const {
return &tma_desc_;
}
// Construct an executable SM90_TMA_LOAD_MULTICAST with tma_mbar
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_TMA_LOAD_MULTICAST_OP, NumBits>
with(uint64_t& tma_load_mbar, uint16_t const& multicast_mask) const {
return {tma_desc_, tma_load_mbar, multicast_mask};
}
// Generate the TMA coord tensor
template <class GShape>
CUTE_HOST_DEVICE constexpr
auto
get_tma_tensor(GShape const& g_shape) const {
static_assert(is_congruent<decltype(g_shape), decltype(g_stride_)>::value);
constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value;
return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat<tma_rank>(Int<0>{}))),
g_shape,
g_stride_);
}
// Don't try to execute a copy with SM90_TMA_LOAD_MULTICAST before calling .with()
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst) = delete;
};
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// TMA_STORE //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// The executable SM90_TMA_STORE with tma_desc
template <class NumBits, class GmemStrides>
struct Copy_Traits<SM90_TMA_STORE, NumBits, GmemStrides>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_STORE arguments
TmaDescriptor tma_desc_;
GmemStrides g_stride_;
// Return TmaDescriptor/TensorMap
CUTE_HOST_DEVICE constexpr
TmaDescriptor const*
get_tma_descriptor() const {
return &tma_desc_;
}
// Generate the TMA coord tensor
template <class GShape>
CUTE_HOST_DEVICE constexpr
auto
get_tma_tensor(GShape const& g_shape) const {
static_assert(is_congruent<decltype(g_shape), decltype(g_stride_)>::value);
constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value;
return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat<tma_rank>(Int<0>{}))),
g_shape,
g_stride_);
}
template <class Coord, int... Is>
CUTE_HOST_DEVICE constexpr
void
copy_unpack_(void const* const src_ptr,
Coord const& dst_coord, seq<Is...>) const
{
#if 0
print("THR (%d,%d,%d) BLK (%d,%d,%d)\n",
threadIdx.x, threadIdx.y, threadIdx.z,
blockIdx.x, blockIdx.y, blockIdx.z);
print(" TMA Coord "); print(dst_coord); print("\n");
print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_),
uint64_t(tma_desc_.size1_),
uint64_t(tma_desc_.size2_),
uint64_t(tma_desc_.size3_))); print("\n");
#endif
SM90_TMA_STORE::copy(&tma_desc_,
src_ptr,
get<Is>(dst_coord)...);
}
// This is the copy_unpack dispatch for this Copy_Traits
// Src needs to be a smem tensor
// Dst needs to be a gmem tensor with TmaCoordIterator .data()
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr
void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
static_assert(is_smem<TS>::value, "Expected smem src for SM90_TMA_STORE");
//static_assert(is_gmem<TD>::value, "Expected gmem dst for SM90_TMA_STORE"); // TMA spoofed src tensor
traits.copy_unpack_(src.data().get(), dst.data().coord_, tuple_seq<decltype(dst.data().coord_)>{});
}
};
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// BULK COPY //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
template <class NumBits, class... OpArgs>
struct Copy_Traits<SM90_BULK_COPY_G2S, NumBits, OpArgs...>
{
static_assert(int32_t(NumBits::value / 8) % 16 == 0,
"Bulk Copy requires copy vector size align to 16B.");
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_BULK_COPY_G2S arguments
// 0: uint64_t* bulk_load_memory_barrier
cute::tuple<OpArgs...> bulk_load_mbar_;
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr
void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
static_assert(is_same<cute::tuple<OpArgs...>, cute::tuple<uint64_t*>>::value,
"Extra arguments not set. Set .with() before use.");
static_assert(is_gmem<TS>::value, "Expected gmem src for SM90_BULK_COPY_G2S");
static_assert(is_smem<TD>::value, "Expected smem dst for SM90_BULK_COPY_G2S");
SM90_BULK_COPY_G2S::copy(src.data().get(), *get<0>(traits.bulk_load_mbar_),
dst.data().get(), int32_t(NumBits::value / 8));
}
// Record the memory barrier for the instruction
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_BULK_COPY_G2S, NumBits, uint64_t*>
with(uint64_t& bulk_mbar) const {
return {{&bulk_mbar}};
}
};
template <class NumBits>
struct Copy_Traits<SM90_BULK_COPY_S2G, NumBits>
{
static_assert(int32_t(NumBits::value / 8) % 16 == 0,
"Bulk Copy requires copy vector size align to 16B.");
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBits>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBits>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr
void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
static_assert(is_smem<TS>::value, "Expected smem src for SM90_BULK_COPY_S2G");
static_assert(is_gmem<TD>::value, "Expected gmem dst for SM90_BULK_COPY_S2G");
SM90_BULK_COPY_S2G::copy(src.data().get(), dst.data().get(), int32_t(NumBits::value / 8));
}
};
//
// Placeholder for the bulk copy algorithm's default, auto-vectorizing behavior
//
template <class... OpArgs>
struct Copy_Traits<SM90_BULK_COPY_AUTO, OpArgs...>
{
// Logical thread id to thread idx (one-thread)
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,_1>, Stride<_0,_0>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,_1>, Stride<_0,_0>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_UBULK_COPY arguments
// 0: uint64_t* bulk_load_memory_barrier [if this is a BULK_LOAD_G2S]
cute::tuple<OpArgs...> opargs_;
// Record the memory barrier for the instruction
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_BULK_COPY_AUTO, uint64_t*>
with(uint64_t& bulk_mbar) const {
return {{&bulk_mbar}};
}
};
//
// MAKE_TMA_COPY and related
//
namespace detail
{
template <int B, int M, int S, class Offset, class SLayout>
auto
get_swizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,SLayout>)
{
return Swizzle<B,M,S>{};
}
template <class Shape, class Stride>
auto
get_swizzle_portion(Layout<Shape,Stride>)
{
return Swizzle<0,4,3>{};
}
template <int B, int M, int S, class Offset, class SLayout>
auto
get_nonswizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,SLayout> const& slayout)
{
return slayout.layout_fn();
}
template <class Shape, class Stride>
auto
get_nonswizzle_portion(Layout<Shape,Stride> const& slayout)
{
return slayout;
}
template <int B, int M, int S>
TMA::SmemSwizzleBits
get_tma_swizzle_bits(Swizzle<B,M,S>)
{
if constexpr (M == 4) {
switch (B) {
default: static_assert(0 <= B && B <= 3, "Expected B = 0,1,2, or 3 when M == 4. Unsupported layout swizzle.");
case 3: return TMA::SmemSwizzleBits::B128;
case 2: return TMA::SmemSwizzleBits::B64;
case 1: return TMA::SmemSwizzleBits::B32;
case 0: return TMA::SmemSwizzleBits::DISABLE;
}
} else
{
static_assert(M < 0, "Unsupported layout swizzle.");
}
}
template <class Layout>
TMA::SmemSwizzleBits
get_tma_swizzle_bits(Layout const& layout)
{
return get_tma_swizzle_bits(get_swizzle_portion(layout));
}
#if !defined(__CUDACC_RTC__)
// Use a smem2gmode map to read through the GMEM tensor
// and construct a TMA Descriptor for the resulting instruction
template <class GEngine, class GLayout,
class SShape, class SStride,
int B, int M, int S>
CUTE_HOST
auto
make_tma_copy_desc(Tensor<GEngine,GLayout> const& gtensor, // The original GMEM Tensor
Layout<SShape,SStride> const& smem_inv, // smem_idx to flat gmode
Swizzle<B,M,S> const& swizzle) // Swizzle fn on smem_idx
{
using T = typename GEngine::value_type;
auto flat_glayout = flatten(gtensor.layout());
CUTE_STATIC_ASSERT_V(rank(flat_glayout) == rank(smem_inv));
constexpr int rank_smem_inv = decltype(rank(smem_inv))::value;
auto tma_multimode = rank(flat_glayout) > Int<5>{};
constexpr uint32_t tma_dim = cute::min(rank(flat_glayout), 5);;
//
// TMA gmem desc info
//
void* gmem_address = (void*) gtensor.data();
cute::array<uint64_t, 5> gmem_prob_shape = {1,1,1,1,1};
cute::array<uint64_t, 5> gmem_prob_stride = {0,0,0,0,0};
for_each(make_seq<rank_smem_inv>{}, [&](auto i) {
auto e = stride<i>(smem_inv); // For g++-7.5, let it deduce e rather than fuse with below
constexpr int j = decltype(e.mode())::value;
constexpr int tma_i = i < 5 ? i : 4;
// Problem stride
uint64_t stride_j = stride<j>(flat_glayout) * sizeof(T);
uint64_t old_stride = gmem_prob_stride[tma_i];
gmem_prob_stride[tma_i] = gcd(gmem_prob_stride[tma_i], stride_j);
// Problem shape
uint64_t shape_j = shape<j>(flat_glayout);
if (gmem_prob_stride[tma_i] != 0) {
// We're "resetting" this TMA mode and using it as a "multimode"
// Recurrence: g_shape = (s_i - 1) * (d_i / gcd_j d_j) + 1
gmem_prob_shape[tma_i] = (gmem_prob_shape[tma_i]-1) * (old_stride / gmem_prob_stride[tma_i])
+ (shape_j-1) * (stride_j / gmem_prob_stride[tma_i])
+ 1;
} else {
gmem_prob_shape[tma_i] = shape_j;
}
});
assert((reinterpret_cast<uint64_t>(gmem_address) & 0b1111) == 0); // Address must be 16B-aligned
assert(gmem_prob_shape[0] >= (uint64_t(1))); // Size must be min 1
assert(gmem_prob_shape[0] <= (uint64_t(1) << 32)); // Size must be max 2^32
assert(gmem_prob_shape[1] >= (uint64_t(1))); // Size must be min 1
assert(gmem_prob_shape[1] <= (uint64_t(1) << 32)); // Size must be max 2^32
assert(gmem_prob_shape[2] >= (uint64_t(1))); // Size must be min 1
assert(gmem_prob_shape[2] <= (uint64_t(1) << 32)); // Size must be max 2^32
assert(gmem_prob_shape[3] >= (uint64_t(1))); // Size must be min 1
assert(gmem_prob_shape[3] <= (uint64_t(1) << 32)); // Size must be max 2^32
assert(gmem_prob_shape[4] >= (uint64_t(1))); // Size must be min 1
assert(gmem_prob_shape[4] <= (uint64_t(1) << 32)); // Size must be max 2^32
assert((gmem_prob_stride[0]) == sizeof(T)); // First stride is implicitly 1
assert((gmem_prob_stride[1]) < (uint64_t(1) << 40)); // Stride must be max 2^40
assert((gmem_prob_stride[1] & 0b1111) == 0); // Stride must be multiple of 16B (128b)
assert((gmem_prob_stride[2]) < (uint64_t(1) << 40)); // Stride must be max 2^40
assert((gmem_prob_stride[2] & 0b1111) == 0); // Stride must be multiple of 16B (128b)
assert((gmem_prob_stride[3]) < (uint64_t(1) << 40)); // Stride must be max 2^40
assert((gmem_prob_stride[3] & 0b1111) == 0); // Stride must be multiple of 16B (128b)
assert((gmem_prob_stride[4]) < (uint64_t(1) << 40)); // Stride must be max 2^40
assert((gmem_prob_stride[4] & 0b1111) == 0); // Stride must be multiple of 16B (128b)
//
// TMA smem desc info
//
cute::array<uint32_t, 5> smem_box_shape = {1,1,1,1,1};
cute::array<uint32_t, 5> smem_box_stride = {1,1,1,1,1};
for_each(make_seq<rank_smem_inv>{}, [&](auto i) {
uint32_t shape_i = shape<i>(smem_inv);
constexpr int tma_i = i < 5 ? i : 4;
if (tma_multimode && tma_i == 4) {
// We're "reusing" this TMA mode and using it as a "multimode"
smem_box_shape[tma_i] = 1;
} else {
smem_box_shape[tma_i] = shape_i;
}
});
assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1
assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8
assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1
assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8
assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1
assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8
assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1
assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8
assert(smem_box_stride[0] >= (uint32_t(1))); // Stride must be min 1
assert(smem_box_stride[0] <= (uint32_t(8))); // Stride must be max 2^3
assert(smem_box_stride[1] >= (uint32_t(1))); // Stride must be min 1
assert(smem_box_stride[1] <= (uint32_t(8))); // Stride must be max 2^3
assert(smem_box_stride[2] >= (uint32_t(1))); // Stride must be min 1
assert(smem_box_stride[2] <= (uint32_t(8))); // Stride must be max 2^3
assert(smem_box_stride[3] >= (uint32_t(1))); // Stride must be min 1
assert(smem_box_stride[3] <= (uint32_t(8))); // Stride must be max 2^3
assert(smem_box_stride[4] >= (uint32_t(1))); // Stride must be min 1
assert(smem_box_stride[4] <= (uint32_t(8))); // Stride must be max 2^3
//
// Construct the descriptor
//
TmaDescriptor tma_desc = {0};
//
// TMA general info
//
#if (__CUDACC_VER_MAJOR__ >= 12)
CUtensorMapDataType tma_format = TMA::to_CUtensorMapDataType<T>();
CUtensorMapInterleave tma_interleave = CU_TENSOR_MAP_INTERLEAVE_NONE;
CUtensorMapL2promotion tma_l2Promotion = CU_TENSOR_MAP_L2_PROMOTION_NONE;
CUtensorMapFloatOOBfill tma_oobFill = CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE;
// TMA smem swizzle type
CUtensorMapSwizzle smem_swizzle = TMA::to_CUtensorMapSwizzle(get_tma_swizzle_bits(swizzle));
CUresult result = cuTensorMapEncodeTiled(
&tma_desc,
tma_format,
tma_dim,
gmem_address,
gmem_prob_shape.data(),
gmem_prob_stride.data() + 1, // gmem_prob_stride[0] implicitly 1
smem_box_shape.data(),
smem_box_stride.data(),
tma_interleave,
smem_swizzle,
tma_l2Promotion,
tma_oobFill);
if (result != CUDA_SUCCESS) {
std::cerr << "TMA Desc Addr: " << &tma_desc
<< "\nformat " << tma_format
<< "\ndim " << tma_dim
<< "\ngmem_address " << gmem_address
<< "\nglobalDim " << gmem_prob_shape
<< "\nglobalStrides " << gmem_prob_stride
<< "\nboxDim " << smem_box_shape
<< "\nelementStrides " << smem_box_stride
<< "\ninterleave " << tma_interleave
<< "\nswizzle " << smem_swizzle
<< "\nl2Promotion " << tma_l2Promotion
<< "\noobFill " << tma_oobFill << std::endl;
std::cerr << "Error: Failed to initialize the TMA descriptor " << result << std::endl;
assert(false);
}
#endif // (__CUDACC_VER_MAJOR__ >= 12)
// Finally, get the inverse permutation of the E<i> bases for the mocked gmem stride
auto gmem_stride_bases_flat = transform(make_seq<rank_smem_inv>{}, [&](auto i) {
auto k = find(stride(smem_inv), E<i>{});
// For gcc 7.5 -- avoid 'if constexpr'
int32_t tma_coord_stride = int32_t(stride<i>(flat_glayout) * sizeof(T) / (gmem_prob_stride[4] != 0 ? gmem_prob_stride[4] : 16));
return conditional_return(tma_multimode && (k >= Int<4>{}),
E<4>{} * tma_coord_stride, // The 4th TMA mode is the multimode, use int32_t coord stride
E<k>{});
});
// Give that the profile of gtensor and fold it
// NOTE: This is the only reason we want the original gtensor shape rather than the more intuitive flattened shape
auto gmem_stride_bases = stride(composition(make_layout(repeat_like(shape(flat_glayout), Int<2>{}), gmem_stride_bases_flat),
make_layout(repeat_like(shape(gtensor), Int<2>{}))));
return make_tuple(tma_desc, gmem_stride_bases);
}
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class TShape, class TStride,
class VShape, class VStride>
CUTE_HOST
auto
make_tma_copy_tiled(CopyOp,
Tensor<GEngine,GLayout> const& gtensor, // Full GMEM Tensor
SLayout const& slayout, // CTA Tile of SMEM
Layout<TShape,TStride> const& cta_t_map, // T: CTA thr idx -> logical TMA tid
Layout<VShape,VStride> const& cta_v_map) // V: CTA val idx -> gmem coord
{
//
// TMA parameter checking
//
CUTE_STATIC_ASSERT_V(product_each(shape(slayout)) == product_each(shape(cta_v_map)),
"TMA requires CTA_Tile and SLayout top-level shape equivalence.");
CUTE_STATIC_ASSERT_V(size(slayout) % cosize(cta_t_map) == Int<0>{},
"Number of active CTAs in TMA must divide domain size of slayout.");
//
// TMA slayout manipulation
//
auto flat_glayout = flatten(gtensor.layout());
// Invert the smem to get the largest contiguous vector in the smem layout
auto inv_smem_layout = right_inverse(get_nonswizzle_portion(slayout));
// trunc_smem_idx -> trunc_smem_coord
// Map from smem idx to a gmem mode
auto sidx_to_gmode = coalesce(composition(cta_v_map, inv_smem_layout));
// Truncate any incompatibilities
auto smem_rank = find_if(stride(sidx_to_gmode), [](auto e) {
auto v = basis_value(e);
return not is_constant<1,decltype(v)>{};
});
static_assert(smem_rank > 0, "Could not find a common smem-gmem vectorization for TMA. Do they have a common majorness?");
// TMA uses a maximum of 5 modes
// If the gtensor has more than 5 modes, we need to reserve the last TMA-mode as a "multimode"
constexpr int smem_tma_rank = cute::min(int(smem_rank), (rank(flat_glayout) > Int<5>{} ? 4 : 5));
// Keep only the static-1 basis modes into gmem
auto sidx_to_gmode_trunc = take<0,smem_tma_rank>(sidx_to_gmode);
// Split according to the portion each multicast CTA will be responsible for
auto sidx_to_gmode_vt = logical_divide(sidx_to_gmode_trunc, shape_div(size(sidx_to_gmode_trunc), cosize(cta_t_map)));
#if 0
print("g_layout : "); print(gtensor.layout()); print("\n");
print("s_layout : "); print(slayout); print("\n");
print("cta_t_map : "); print(cta_t_map); print("\n");
print("cta_v_map : "); print(cta_v_map); print("\n");
print("inv_smem : "); print(inv_smem_layout); print("\n");
print("sidx_to_gmode : "); print(sidx_to_gmode); print("\n");
print("sidx_to_gmode_trunc : "); print(sidx_to_gmode_trunc); print("\n");
print("sidx_to_gmode_vt : "); print(sidx_to_gmode_vt); print("\n");
#endif
//
// TMA gtensor manipulation
//
// Generate a TupleBasis for the gtensor
auto flat_gbasis = make_basis_like(shape(flat_glayout));
// Fold the flat_gbasis into the glayout
auto glayout_basis = make_layout(shape(gtensor),
stride(composition(make_layout(repeat_like(shape(flat_glayout), Int<2>{}), flat_gbasis),
make_layout(repeat_like(shape(gtensor), Int<2>{})))));
// Tile the modes of gtensor with the truncated cta_v_map o inv_smem_layout_trunc
auto tma_layout_v_trunc = flatten(composition(glayout_basis, layout<0>(sidx_to_gmode_vt)));
// Append any missing basis on the end as size-1 modes b/c they got truncated
// NOTE This is essentially ArithmeticTuple complement...
auto missing_basis = fold(stride(tma_layout_v_trunc), flat_gbasis, [](auto init, auto e) {
auto k = find(init, e);
return remove<k>(init);
});
// The appended map from truncated smem codomain to gmem mode: trunc_smem_idx -> gmem_mode
auto tma_layout_v = make_layout(flatten(cute::make_tuple(tma_layout_v_trunc.shape(), repeat<rank(missing_basis)>(Int<1>{}))),
flatten(cute::make_tuple(tma_layout_v_trunc.stride(), missing_basis)));
#if 0
print("flat_gbasis : "); print(flat_gbasis); print("\n");
print("missing_b : "); print(missing_basis); print("\n");
print("tma_layout_v : "); print(tma_layout_v); print("\n");
#endif
//
// Construct the TMA Desc and GMEM mode ordering
//
auto [tma_desc, gmem_stride_bases] = detail::make_tma_copy_desc(gtensor, tma_layout_v, get_swizzle_portion(slayout));
//
// Construct the Copy_Traits
//
using T = typename GEngine::value_type;
constexpr int num_bits = decltype(size<0>(sidx_to_gmode_vt))::value * sizeof(T) * 8;
using Traits = Copy_Traits<CopyOp, Int<num_bits>, decltype(gmem_stride_bases)>;
#if 0
print("num_bits : "); print(num_bits); print("\n");
print("g_stride_bases: "); print(gmem_stride_bases); print("\n");
#endif
Traits tma_traits{tma_desc, gmem_stride_bases};
//
// Construct the TiledCopy
//
auto cta_tiler = product_each(shape(cta_v_map));
// (CTA V, CTA T) -> smem_coord
auto layout_vt = composition(inv_smem_layout, make_layout(shape(sidx_to_gmode_vt)));
// Scale that up to cover all of the smem_coords
auto layout_VT = tile_to_shape(layout_vt, make_shape(size(cta_v_map)/size<1>(layout_vt), size<1>(layout_vt)));
// Flip it and change the domain of the T from logical thr to thr_idx
auto layout_TV = make_layout(composition(layout<1>(layout_VT), cta_t_map), layout<0>(layout_VT));
#if 0
print("cta_tiler : "); print(cta_tiler); print("\n");
print("layout_VT : "); print(layout_VT); print("\n");
print("layout_TV : "); print(layout_TV); print("\n");
#endif
using T = typename GEngine::value_type;
return TiledCopy<Copy_Atom<Traits,T>, decltype(layout_TV), decltype(cta_tiler)>{tma_traits};
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace detail
/** Make a CuTe CTA-collective TiledCopy for a TMA operation.
*
* @param CopyOp The target copy operation: SM90_TMA_LOAD, SM90_TMA_LOAD_MULTICAST, SM90_TMA_STORE
* @param gtensor The GMEM Tensor to be involved in the TMA.
* @param slayout The SMEM Layout to be involved in the TMA.
* @param cta_tile The CTA-local tile that each CTA will be tiling GMEM with.
* This is often the blk_shape that is used to tile the GMEM for CTAs:
* local_tile(gtensor, blk_shape, blk_coord) -> CTA-local tile of gtensor
* @param cluster_size When using SM90_TMA_LOAD_MULTICAST, this can be a (static) power-of-2 <= 16
* defining the multicast size (used to further partition the SMEM)
* Else, static-1
*
* This code attempts to maximize the TMA box size. It does this by tracing
* the SMEM "vector" -- the inverse of the smem layout -- to find the largest
* contiguous array of smem that can be written to/from global memory given
* the constraints that the TMA instruction imposes.
*
* This is accomplished by assigning "basis" strides to the GMEM to track which
* modes of SMEM map to which modes of GMEM, then reorder the modes of GMEM according
* to the SMEM vector, and then using those GMEM/SMEM modes to fill in the desc.
*
* Examples:
using T = float;
T* gptr = nullptr;
{
// Simple 2D
Tensor gtensor = make_tensor(gptr, make_shape(1024, 256), GenRowMajor{}); // K-Major GMEM
auto slayout = make_layout(make_shape(_64{}, _32{}), GenRowMajor{}); // K-Major SMEM
auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout);
}
{
// GMMA 2D
Tensor gtensor = make_tensor(gptr, make_shape(1024, 256)); // MN-Major GMEM
auto slayout = tile_to_shape(GMMA::Layout_MN_SW128_Atom<T>{}, make_shape(_128{},_64{})); // MN-Major Swizzled+Tiled 128x64 SMEM
auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout);
}
{
// 3D
Tensor gtensor = make_tensor(gptr, make_shape(1024, 32, 512), make_stride(64, Int<1>{}, 65536)); // GMEM
auto slayout = make_layout(make_shape(_16{}, _8{}, _2{}), make_stride(_16{}, _1{}, _8{})); // SMEM w/ same major-mode
auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout);
}
{
// cuTENSOR 4D
auto layout = make_shape(make_shape(32,40),make_shape(make_shape(8,8),656)); // GMEM
auto cta_tile = make_shape(_128{},make_shape(_32{},_2{})); // GMEM Tiling:
// Take 128-elem from m: m0 must divide 128,
// m-last may be predicated
// Take 32-elem from k0, 2-elem from k1
auto slayout = make_layout(cta_tile); // Col-Major SMEM
auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout, cta_tile, Int<1>{});
}
*
* Check the TMA box size and desc:
print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
print("TMA desc : "); print(tma.tma_desc_); print("\n");
*
* Usage:
Tensor mA = tma_a.get_tma_tensor(make_shape(M,N)); // (M,N) TMA coord tensor
Tensor gA = local_tile(mA, cta_tile, cta_coord); // (BLK_M,BLK_N) TMA coord tensor for this CTA
Tensor sA = make_tensor(make_smem_ptr<T>(sptr), slayout); // (BLK_M,BLK_N) SMEM tensor
auto cta_tma = tma.get_slice(cta_idx_in_cluster); // Slice for multicast partitioning
Tensor tAgA = cta_tma.partition_S(gA); // Partition for src
Tensor tAsA = cta_tma.partition_D(sA); // Partition for dst
copy(tma.with(barrier, mcast_mask), tAgA, tAsA); // copy with supporting TMA params
*/
#if !defined(__CUDACC_RTC__)
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class CTA_Tile,
class Cluster_Size>
CUTE_HOST
auto
make_tma_copy(CopyOp const& copy_op,
Tensor<GEngine,GLayout> const& gtensor,
SLayout const& slayout,
CTA_Tile const& cta_tile,
Cluster_Size const& cluster_size)
{
return detail::make_tma_copy_tiled(copy_op,
gtensor,
slayout,
make_layout(cluster_size),
make_identity_layout(cta_tile));
}
// Explicit defaulting
template <class CopyOp,
class GEngine, class GLayout,
class SLayout>
CUTE_HOST
auto
make_tma_copy(CopyOp const& copy_op,
Tensor<GEngine,GLayout> const& gtensor,
SLayout const& slayout)
{
return make_tma_copy(copy_op, gtensor, slayout, product_each(shape(slayout)), Int<1>{});
}
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class Cluster_Size>
CUTE_HOST
auto
make_tma_copy(CopyOp const& copy_op,
Tensor<GEngine,GLayout> const& gtensor,
SLayout const& slayout,
Cluster_Size const& cluster_size)
{
return make_tma_copy(copy_op, gtensor, slayout, product_each(shape(slayout)), cluster_size);
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute