cutlass/test/unit/epilogue/threadblock/epilogue_simt_sm60.cu
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

486 lines
12 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include <fstream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/gemm/warp/mma_simt.h"
#include "cutlass/gemm/warp/mma_simt_policy.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "testbed.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Real-valued half precision tests
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_32x64_32x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<32, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<4, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_64x64_64x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<64, 64, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<8, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_64x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<64, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<8, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_128x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<8, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_128x256_64x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<128, 256, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<8, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_256x128_64x64x8) {
//
// Define the warp-level matrix multiply
//
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
int const kElementsPerAccess = 1;
using Shape = cutlass::gemm::GemmShape<256, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>;
using ElementC = ElementAccumulator;
using LayoutA = cutlass::layout::ColumnMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using ElementOutput = Element;
using ElementAccumulator = Element;
using ElementCompute = Element;
using WarpMmaSimt = cutlass::gemm::warp::MmaSimt<
WarpShape,
Element,
LayoutA,
Element,
LayoutB,
Element,
LayoutC,
cutlass::gemm::warp::MmaSimtPolicy<
cutlass::MatrixShape<4, 8>,
cutlass::layout::RowMajorInterleaved<2>,
cutlass::gemm::GemmShape<8, 4, 1>
>
>;
//
// Output operator
//
using OutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
kElementsPerAccess,
ElementAccumulator,
ElementCompute
>;
//
// Define the epilogue
//
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
Shape,
WarpMmaSimt,
OutputOp,
kElementsPerAccess
>::Epilogue;
//
// Instantiate epilogue
//
EpilogueTestbed<Epilogue> testbed;
bool passed = testbed.run_all();
EXPECT_TRUE(passed);
}
///////////////////////////////////////////////////////////////////////////////////////////////////