cutlass/test/unit/gemm/threadblock/epilogue_workspace.cu
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

125 lines
4.2 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/epilogue/epilogue_workspace.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace gemm {
namespace threadblock {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Kernel computes accumulator data and stores it out
template <typename Epilogue>
__global__ void kernel_epilogue_workspace(typename Epilogue::Params params) {
__shared__ typename Epilogue::SharedStorage shared_storage;
int warp_id = threadIdx.y;
int lane_id = threadIdx.x;
Epilogue epilogue(params, shared_storage, warp_id, lane_id);
//
// Initialize accumulator tile
//
typename Epilogue::FragmentC accum;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < Epilogue::FragmentC::kElements; ++i) {
accum[i] = Element(warp_id * blockDim.x + lane_id);
}
//
// Efficient epilogue
//
cutlass::GemmCoord tb_tile_coord{blockIdx.x, blockIdx.y, 0};
cutlass::GemmCoord problem_size =
tb_tile_coord *
cutlass::GemmCoord{Epilogue::Shape::kM, Epilogue::Shape::kN, 1};
// Store accumulators
epilogue(
problem_size,
tb_tile_coord,
accum);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM75_gemm_threadblock_epilogue_workspace, tensor_op_128x128_64x64) {
//
// Define an instance of the epilogue and see if it works
//
static int const kWarpCount = 4;
static int const kWarpSize = 32;
using Shape = cutlass::MatrixShape<128, 128>;
using FragmentC = cutlass::Array<int, Shape::kCount / (kWarpCount * kWarpSize)>;
using Epilogue = cutlass::gemm::threadblock::EpilogueWorkspace<
Shape,
kWarpCount,
FragmentC
>;
typename Epilogue::Params params(
);
// Launch the kernel
dim3 grid(1,1);
dim3 block(kWarpSize, kWarpCount);
test::gemm::threadblock::kernel_epilogue_workspace<Epilogue><<< grid, block >>>(
params
);
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "Kernel launch error - " << cudaGetErrorString(result);
//
//
//
}
/////////////////////////////////////////////////////////////////////////////////////////////////