cutlass/test/unit/gemm/threadblock/mma_pipelined_sm70.cu
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

493 lines
18 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "mma_pipelined_testbed.h"
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_64x64x32_64x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 1, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_128x128x32_64x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_64x64x32_32x32x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_128x64x32_64x32x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_128x64x64_64x32x64_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>;
using OperatorShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, OperatorShape, ElementA, LayoutA, ElementB,
LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_64x128x32_32x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_congruous, tensor_op_256x128x32_32x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::ColumnMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::RowMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(256, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 8, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_64x64x32_64x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 1, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_128x128x32_64x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_256x128x32_64x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(256, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 8, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_64x64x32_32x32x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_128x64x32_64x32x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_128x64x64_64x32x64_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = float;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>;
using OperatorShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, OperatorShape, ElementA, LayoutA, ElementB,
LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM70_gemm_threadblock_crosswise, tensor_op_64x128x32_32x64x32_8x8x4) {
using ElementA = cutlass::half_t;
using LayoutA = cutlass::layout::RowMajor;
using ElementB = cutlass::half_t;
using LayoutB = cutlass::layout::ColumnMajor;
using ElementC = cutlass::half_t;
using LayoutC = cutlass::layout::ColumnMajor;
cutlass::gemm::GemmCoord problem_size(64, 128, 128);
using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
float alpha = 1.f;
float beta = 0.0f;
// Define the MmaCore components
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementC, LayoutC,
cutlass::arch::OpClassTensorOp>;
dim3 grid(1, 1);
dim3 block(32, 4, 1);
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
problem_size.k(), alpha, beta)
.run(grid, block);
}
#endif // CUTLASS_ARCH_MMA_SM70_SUPPORTED