
CUTLASS 2.0 Substantially refactored for - Better performance, particularly for native Turing Tensor Cores - Robust and durable templates spanning the design space - Encapsulated functionality embodying modern C++11 programming techniques - Optimized containers and data types for efficient, generic, portable device code Updates to: - Quick start guide - Documentation - Utilities - CUTLASS Profiler Native Turing Tensor Cores - Efficient GEMM kernels targeting Turing Tensor Cores - Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands Coverage of existing CUTLASS functionality: - GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs - Volta Tensor Cores through native mma.sync and through WMMA API - Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions - Batched GEMM operations - Complex-valued GEMMs Note: this commit and all that follow require a host compiler supporting C++11 or greater.
9 lines
995 B
JavaScript
9 lines
995 B
JavaScript
var searchData=
|
|
[
|
|
['has_5fdenorm',['has_denorm',['../structstd_1_1numeric__limits_3_01cutlass_1_1half__t_01_4.html#aaf46b5d03403828c1e6633fb714ffd84',1,'std::numeric_limits< cutlass::half_t >']]],
|
|
['has_5fdenorm_5floss',['has_denorm_loss',['../structstd_1_1numeric__limits_3_01cutlass_1_1half__t_01_4.html#a8b371f82151fd0238b7da083fa2b87a9',1,'std::numeric_limits< cutlass::half_t >']]],
|
|
['has_5finfinity',['has_infinity',['../structstd_1_1numeric__limits_3_01cutlass_1_1half__t_01_4.html#a6f7f2fbe6cd7a04803b90b8fa9172098',1,'std::numeric_limits< cutlass::half_t >']]],
|
|
['has_5fquiet_5fnan',['has_quiet_NaN',['../structstd_1_1numeric__limits_3_01cutlass_1_1half__t_01_4.html#a3d75832e46bc154758e35a03a624ccf8',1,'std::numeric_limits< cutlass::half_t >']]],
|
|
['has_5fsignaling_5fnan',['has_signaling_NaN',['../structstd_1_1numeric__limits_3_01cutlass_1_1half__t_01_4.html#a68a0d0f6ecc2f3b84f2e71475b2c48bd',1,'std::numeric_limits< cutlass::half_t >']]]
|
|
];
|