cutlass/test/unit/core/tfloat32.cu
Andrew Kerr 86931fef85
CUTLASS 2.2 (#96)
Adds support for NVIDIA Ampere Architecture features. CUDA 11 Toolkit recommended.
2020-06-08 16:17:35 -07:00

198 lines
6.8 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates all CUTLASS-supported numeric types
and is safe to use in a union.
*/
#include "../common/cutlass_unit_test.h"
#include "cutlass/array.h"
#include "cutlass/numeric_types.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/util/device_memory.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Host
//
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(tfloat32_t, host_conversion) {
for (int i = -1024; i < 1024; ++i) {
float f = static_cast<float>(i);
cutlass::tfloat32_t x = static_cast<cutlass::tfloat32_t>(i);
cutlass::tfloat32_t y = static_cast<cutlass::tfloat32_t>(f);
EXPECT_TRUE(static_cast<int>(x) == i);
EXPECT_TRUE(static_cast<float>(y) == f);
}
// Try out user-defined literals
EXPECT_TRUE(cutlass::tfloat32_t(7) == 7_tf32);
EXPECT_TRUE(7 == static_cast<int>(7_tf32));
}
TEST(tfloat32_t, host_arithmetic) {
for (int i = -100; i < 100; ++i) {
for (int j = -100; j < 100; ++j) {
cutlass::tfloat32_t x = static_cast<cutlass::tfloat32_t>(i);
cutlass::tfloat32_t y = static_cast<cutlass::tfloat32_t>(j);
EXPECT_TRUE(static_cast<int>(x + y) == (i + j));
}
}
}
TEST(tfloat32_t, host_round_nearest) {
struct {
uint32_t f32_bits;
uint32_t expected;
} tests[] = {
{0x40000000, 0x40000000}, // M=0, R=0, S=0 => rtz
{0x40001000, 0x40000000}, // M=0, R=1, S=0 => rtz
{0x40000001, 0x40000000}, // M=0, R=0, S=1 => rtz
{0x40001001, 0x40002000}, // M=0, R=1, S=1 => +inf
{0x40002000, 0x40002000}, // M=1, R=0, S=0 => rtz
{0x40002001, 0x40002000}, // M=1, R=0, S=1 => rtz
{0x40003000, 0x40004000}, // M=1, R=1, S=0 => +inf
{0x40003001, 0x40004000}, // M=1, R=1, S=1 => +inf
{0x7f800000, 0x7f800000}, // +inf
{0xff800000, 0xff800000}, // -inf
{0x7fffffff, 0x7fffffff}, // canonical NaN to canonical NaN
{0x7f800001, 0x7fffffff}, // NaN to canonical NaN
{0xff800001, 0x7fffffff}, // NaN to canonical NaN
{0, 0}
};
bool running = true;
for (int i = 0; running; ++i) {
float f32 = reinterpret_cast<float const &>(tests[i].f32_bits);
cutlass::NumericConverter<
cutlass::tfloat32_t,
float,
cutlass::FloatRoundStyle::round_to_nearest> converter;
cutlass::tfloat32_t tf32 = converter(f32);
// note, we must explicitly truncate the low-order bits since they are not defined in TF32.
if (cutlass::isfinite(tf32)) {
tf32.storage &= 0xffffe000;
}
bool passed = (tests[i].expected == tf32.raw());
EXPECT_TRUE(passed)
<< "Error - convert(f32: 0x" << std::hex << tests[i].f32_bits
<< ") -> 0x" << std::hex << tests[i].expected << "\ngot: 0x" << std::hex << tf32.raw();
if (!tests[i].f32_bits) {
running = false;
}
}
}
namespace test {
namespace core {
__global__ void convert_tf32_half_ulp(cutlass::tfloat32_t *out, float const *in) {
cutlass::NumericConverter<
cutlass::tfloat32_t,
float,
cutlass::FloatRoundStyle::round_half_ulp_truncate> convert;
*out = convert(*in);
}
}
}
TEST(tfloat32_t, host_round_half_ulp) {
struct {
uint32_t f32_bits;
uint32_t expected;
} tests[] = {
{0x40001fff, 0x40002000},
{0x40000000, 0x40000000}, // M=0, R=0, S=0 => rtz
{0x40001000, 0x40002000}, // M=0, R=1, S=0 => rtz - this difers from RNE
{0x40000001, 0x40000000}, // M=0, R=0, S=1 => rtz
{0x40001001, 0x40002000}, // M=0, R=1, S=1 => +inf
{0x40002000, 0x40002000}, // M=1, R=0, S=0 => rtz
{0x40002001, 0x40002000}, // M=1, R=0, S=1 => rtz
{0x40003000, 0x40004000}, // M=1, R=1, S=0 => +inf
{0x40003001, 0x40004000}, // M=1, R=1, S=1 => +inf
{0x7f800000, 0x7f800000}, // +inf
{0xff800000, 0xff800000}, // -inf
{0x7fffffff, 0x7fffffff}, // canonical NaN to canonical NaN
{0x7f800001, 0x7f800001}, // NaN to NaN
{0xff800001, 0xff800001}, // NaN to NaN
{0, 0}
};
cutlass::NumericConverter<
cutlass::tfloat32_t,
float,
cutlass::FloatRoundStyle::round_half_ulp_truncate> convert;
bool running = true;
for (int i = 0; running; ++i) {
float f32 = reinterpret_cast<float const &>(tests[i].f32_bits);
cutlass::tfloat32_t tf32 = convert(f32);
// note, for this test, we must explicitly truncate the low-order bits since they are not
// defined in TF32.
if (cutlass::isfinite(tf32)) {
tf32.storage &= 0xffffe000;
}
bool passed = (tests[i].expected == tf32.raw());
EXPECT_TRUE(passed)
<< "Error - convert(f32: 0x" << std::hex << tests[i].f32_bits
<< ") -> 0x" << std::hex << tests[i].expected << "\ngot: 0x" << std::hex << tf32.raw();
if (!tests[i].f32_bits) {
running = false;
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Device
//
/////////////////////////////////////////////////////////////////////////////////////////////////