cutlass/include/cutlass/array.h
2022-04-23 15:02:38 -04:00

570 lines
13 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates all CUTLASS-supported numeric types
and is safe to use in a union.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
namespace cutlass {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Statically sized array for any data type
template <
typename T,
int N,
bool RegisterSized = sizeof_bits<T>::value >= 32
>
class Array;
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines the size of an Array<> in bits
template <typename T, int N, bool RegisterSized>
struct sizeof_bits<Array<T, N, RegisterSized> > {
static int const value =
int(sizeof(typename Array<T, N, RegisterSized>::Storage)) * 8 * int(Array<T, N, RegisterSized>::kStorageElements);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns true if the argument is a power of 2
CUTLASS_HOST_DEVICE
constexpr bool ispow2(unsigned x) {
return x && (!(x & (x - 1)));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns the largest power of two not greater than the argument.
CUTLASS_HOST_DEVICE
constexpr unsigned floor_pow_2(unsigned x) {
return (x == 0 || ispow2(x)) ? x : ((floor_pow_2(x >> 1)) << 1);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Statically sized array for any data type
template <
typename T,
int N
>
class Array<T, N, true> {
public:
/// Storage type
using Storage = T;
/// Element type
using Element = T;
/// Number of storage elements
//static std::size_t const kStorageElements = N;
static size_t const kStorageElements = N;
/// Number of logical elements
static size_t const kElements = N;
//
// C++ standard members
//
typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type &reference;
typedef value_type const & const_reference;
typedef value_type *pointer;
typedef value_type const * const_pointer;
//
// Iterators
//
/// Bidirectional iterator over elements
class iterator {
/// Pointer to object
T *ptr_;
public:
CUTLASS_HOST_DEVICE
iterator(): ptr_(nullptr) { }
CUTLASS_HOST_DEVICE
iterator(T *_ptr): ptr_(_ptr) { }
CUTLASS_HOST_DEVICE
iterator &operator++() {
++ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
iterator &operator--() {
--ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
iterator operator++(int) {
iterator ret(*this);
++ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
iterator operator--(int) {
iterator ret(*this);
--ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
T &operator*() const {
return *ptr_;
}
CUTLASS_HOST_DEVICE
bool operator==(iterator const &other) const {
return ptr_ == other.ptr_;
}
CUTLASS_HOST_DEVICE
bool operator!=(iterator const &other) const {
return ptr_ != other.ptr_;
}
};
/// Bidirectional constant iterator over elements
class const_iterator {
/// Pointer to object
const T *ptr_;
public:
CUTLASS_HOST_DEVICE
const_iterator(): ptr_(nullptr) { }
CUTLASS_HOST_DEVICE
const_iterator(T const *_ptr): ptr_(_ptr) { }
CUTLASS_HOST_DEVICE
const_iterator &operator++() {
++ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
const_iterator &operator--() {
--ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
const_iterator operator++(int) {
const_iterator ret(*this);
++ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
const_iterator operator--(int) {
const_iterator ret(*this);
--ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
T const &operator*() const {
return *ptr_;
}
CUTLASS_HOST_DEVICE
bool operator==(const_iterator const &other) const {
return ptr_ == other.ptr_;
}
CUTLASS_HOST_DEVICE
bool operator!=(const_iterator const &other) const {
return ptr_ != other.ptr_;
}
};
/// Bidirectional iterator over elements
class reverse_iterator {
/// Pointer to object
T *ptr_;
public:
CUTLASS_HOST_DEVICE
reverse_iterator(): ptr_(nullptr) { }
CUTLASS_HOST_DEVICE
reverse_iterator(T *_ptr): ptr_(_ptr) { }
CUTLASS_HOST_DEVICE
reverse_iterator &operator++() {
--ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
reverse_iterator &operator--() {
++ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
reverse_iterator operator++(int) {
iterator ret(*this);
--ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
reverse_iterator operator--(int) {
iterator ret(*this);
++ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
T &operator*() const {
return *(ptr_ - 1);
}
CUTLASS_HOST_DEVICE
bool operator==(reverse_iterator const &other) const {
return ptr_ == other.ptr_;
}
CUTLASS_HOST_DEVICE
bool operator!=(reverse_iterator const &other) const {
return ptr_ != other.ptr_;
}
};
/// Bidirectional constant iterator over elements
class const_reverse_iterator {
/// Pointer to object
T const *ptr_;
public:
CUTLASS_HOST_DEVICE
const_reverse_iterator(): ptr_(nullptr) { }
CUTLASS_HOST_DEVICE
const_reverse_iterator(T const *_ptr): ptr_(_ptr) { }
CUTLASS_HOST_DEVICE
const_reverse_iterator &operator++() {
--ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
const_reverse_iterator &operator--() {
++ptr_;
return *this;
}
CUTLASS_HOST_DEVICE
const_reverse_iterator operator++(int) {
const_reverse_iterator ret(*this);
--ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
const_reverse_iterator operator--(int) {
const_reverse_iterator ret(*this);
++ptr_;
return ret;
}
CUTLASS_HOST_DEVICE
T const &operator*() const {
return *(ptr_ - 1);
}
CUTLASS_HOST_DEVICE
bool operator==(const_iterator const &other) const {
return ptr_ == other.ptr_;
}
CUTLASS_HOST_DEVICE
bool operator!=(const_iterator const &other) const {
return ptr_ != other.ptr_;
}
};
private:
/// Internal storage
Storage storage[kElements];
public:
#if 0
CUTLASS_HOST_DEVICE
Array() { }
CUTLASS_HOST_DEVICE
Array(Array const &x) {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElements; ++i) {
storage[i] = x.storage[i];
}
}
#endif
/// Efficient clear method
CUTLASS_HOST_DEVICE
void clear() {
fill(T(0));
}
CUTLASS_HOST_DEVICE
reference at(size_type pos) {
return reinterpret_cast<reference>(storage[pos]);
}
CUTLASS_HOST_DEVICE
const_reference at(size_type pos) const {
return reinterpret_cast<const_reference>(storage[pos]);
}
CUTLASS_HOST_DEVICE
reference operator[](size_type pos) {
return reinterpret_cast<reference>(storage[pos]);
}
CUTLASS_HOST_DEVICE
const_reference operator[](size_type pos) const {
return reinterpret_cast<const_reference>(storage[pos]);
}
CUTLASS_HOST_DEVICE
reference front() {
return reinterpret_cast<reference>(storage[0]);
}
CUTLASS_HOST_DEVICE
const_reference front() const {
return reinterpret_cast<const_reference>(storage[0]);
}
CUTLASS_HOST_DEVICE
reference back() {
return reinterpret_cast<reference>(storage[kStorageElements - 1]);
}
CUTLASS_HOST_DEVICE
const_reference back() const {
return reinterpret_cast<const_reference>(storage[kStorageElements - 1]);
}
CUTLASS_HOST_DEVICE
pointer data() {
return reinterpret_cast<pointer>(storage);
}
CUTLASS_HOST_DEVICE
const_pointer data() const {
return reinterpret_cast<const_pointer>(storage);
}
CUTLASS_HOST_DEVICE
pointer raw_data() {
return reinterpret_cast<pointer>(storage);
}
CUTLASS_HOST_DEVICE
const_pointer raw_data() const {
return reinterpret_cast<const_pointer>(storage);
}
CUTLASS_HOST_DEVICE
constexpr bool empty() const {
return !kElements;
}
CUTLASS_HOST_DEVICE
constexpr size_type size() const {
return kElements;
}
CUTLASS_HOST_DEVICE
constexpr size_type max_size() const {
return kElements;
}
CUTLASS_HOST_DEVICE
void fill(T const &value) {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElements; ++i) {
storage[i] = static_cast<Storage>(value);
}
}
CUTLASS_HOST_DEVICE
iterator begin() {
return iterator(storage);
}
CUTLASS_HOST_DEVICE
const_iterator cbegin() const {
return const_iterator(storage);
}
CUTLASS_HOST_DEVICE
iterator end() {
return iterator(reinterpret_cast<pointer>(storage + kStorageElements));
}
CUTLASS_HOST_DEVICE
const_iterator cend() const {
return const_iterator(reinterpret_cast<const_pointer>(storage + kStorageElements));
}
CUTLASS_HOST_DEVICE
reverse_iterator rbegin() {
return reverse_iterator(reinterpret_cast<pointer>(storage + kStorageElements));
}
CUTLASS_HOST_DEVICE
const_reverse_iterator crbegin() const {
return const_reverse_iterator(reinterpret_cast<const_pointer>(storage + kStorageElements));
}
CUTLASS_HOST_DEVICE
reverse_iterator rend() {
return reverse_iterator(reinterpret_cast<pointer>(storage));
}
CUTLASS_HOST_DEVICE
const_reverse_iterator crend() const {
return const_reverse_iterator(reinterpret_cast<const_pointer>(storage));
}
//
// Comparison operators
//
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Element>
CUTLASS_HOST_DEVICE
Array<Element, 1> make_Array(Element x) {
Array<Element, 1> m;
m[0] = x;
return m;
}
template <typename Element>
CUTLASS_HOST_DEVICE
Array<Element, 2> make_Array(Element x, Element y) {
Array<Element, 2> m;
m[0] = x;
m[1] = y;
return m;
}
template <typename Element>
CUTLASS_HOST_DEVICE
Array<Element, 3> make_Array(Element x, Element y, Element z) {
Array<Element, 3> m;
m[0] = x;
m[1] = y;
m[2] = z;
return m;
}
template <typename Element>
CUTLASS_HOST_DEVICE
Array<Element, 4> make_Array(Element x, Element y, Element z, Element w) {
Array<Element, 4> m;
m[0] = x;
m[1] = y;
m[2] = z;
m[3] = w;
return m;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////////////////////////
#include "cutlass/array_subbyte.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Aligned array type
template <
/// Element type
typename T,
/// Number of elements in the array
int N,
/// Alignment requirement in bytes
int Alignment = sizeof_bits<T>::value * N / 8
>
class alignas(Alignment) AlignedArray: public Array<T, N> {
public:
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////////////////////////