
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
113 lines
3.9 KiB
C++
113 lines
3.9 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/coord.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace device {
|
|
namespace kernel {
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Defines several helpers
|
|
namespace detail {
|
|
|
|
/// Helper to perform for-each operation
|
|
template <typename Func, int Rank, int RankRemaining>
|
|
struct TensorForEachHelper {
|
|
|
|
/// Constructor for general rank
|
|
__inline__ __device__
|
|
TensorForEachHelper(Func &func, Coord<Rank> const &size, Coord<Rank> &coord, int64_t index) {
|
|
|
|
int64_t product = 1;
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = Rank - RankRemaining; i < Rank; ++i) {
|
|
product *= size[i];
|
|
}
|
|
|
|
coord[Rank - 1 - RankRemaining] = index / product;
|
|
int64_t remaining = index % product;
|
|
|
|
TensorForEachHelper<Func, Rank, RankRemaining-1>(func, size, coord, remaining);
|
|
}
|
|
};
|
|
|
|
/// Helper to perform for-each operation
|
|
template <typename Func, int Rank>
|
|
struct TensorForEachHelper<Func, Rank, 0> {
|
|
|
|
/// Constructor for fastest chaning rank
|
|
__inline__ __device__
|
|
TensorForEachHelper(Func &func, Coord<Rank> const &size, Coord<Rank> &coord, int64_t index) {
|
|
|
|
coord[Rank - 1] = index;
|
|
|
|
if (coord < size) {
|
|
func(coord);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Helper to perform for-each operation
|
|
template <typename Func, int Rank, typename Params>
|
|
__global__ void TensorForEach(Coord<Rank> size, Params params = Params()) {
|
|
|
|
Func func(params);
|
|
|
|
int64_t index = threadIdx.x + blockIdx.x * blockDim.x;
|
|
int64_t max_index = 1;
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Rank; ++i) {
|
|
max_index *= size[i];
|
|
}
|
|
|
|
CUTLASS_PRAGMA_NO_UNROLL
|
|
while (index < max_index) {
|
|
Coord<Rank> coord;
|
|
|
|
detail::TensorForEachHelper<Func, Rank, Rank - 1>(func, size, coord, index);
|
|
index += blockDim.x * gridDim.x;
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace kernel
|
|
} // namespace device
|
|
} // namespace reference
|
|
} // namespace cutlass
|
|
|