
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
193 lines
6.6 KiB
C++
193 lines
6.6 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Reference implementation for GEMM in host-side code.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/coord.h"
|
|
#include "cutlass/matrix_traits.h"
|
|
#include "cutlass/tensor_view.h"
|
|
#include "cutlass/gemm/gemm_coord.h"
|
|
|
|
#include "tools/util/reference/detail/inner_product.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace device {
|
|
namespace thread {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Thread-level blocked general matrix product.
|
|
//
|
|
// Note, this is a reference implementation. Performance is not expected to approach peak.
|
|
//
|
|
template <
|
|
typename TensorRefA, /// concept: ZipTensorRef
|
|
typename TensorRefB, /// concept: ZipTensorRef
|
|
typename TensorRefC, /// concept: ZipTensorRef
|
|
typename ScalarType, /// real-valued type underlying complex scalars
|
|
typename AccumulatorType, /// real-valued type underlying complex accumulators
|
|
typename OutputTile /// concept: Shape
|
|
>
|
|
struct SplitComplexGemm {
|
|
|
|
typedef typename TensorRefA::First::Storage RealScalarA;
|
|
typedef typename TensorRefB::First::Storage RealScalarB;
|
|
typedef typename TensorRefC::First::Storage RealScalarC;
|
|
|
|
typedef platform::complex<RealScalarA> ScalarA;
|
|
typedef platform::complex<RealScalarB> ScalarB;
|
|
typedef platform::complex<AccumulatorType> ComplexAccumulator;
|
|
typedef platform::complex<ScalarType> ComplexScalar;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// Tile for A operand
|
|
ScalarA A_tile[OutputTile::kW];
|
|
|
|
/// Tile for B operand
|
|
ScalarB B_tile[OutputTile::kH];
|
|
|
|
/// Tile for Accumulator
|
|
ComplexAccumulator accum[OutputTile::kH][OutputTile::kW];
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Constructor
|
|
CUTLASS_HOST_DEVICE
|
|
Gemm(ComplexAccumulator initial_accum = AccumulatorType(0)) {
|
|
|
|
// Clear fetch registers
|
|
for (int i = 0; i < OutputTile::kW; ++i) {
|
|
A_tile[i] = ScalarA(0);
|
|
}
|
|
|
|
for (int j = 0; j < OutputTile::kW; ++j) {
|
|
B_tile[j] = ScalarB(0);
|
|
}
|
|
|
|
// Clear accumulators
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int j = 0; j < OutputTile::kH; ++j) {
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < OutputTile::kW; ++i) {
|
|
accum[j][i] = initial_accum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Computes a matrix product
|
|
CUTLASS_HOST_DEVICE
|
|
Gemm & multiply_add(
|
|
gemm::GemmCoord problem_size,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
MatrixCoord output_coord = MatrixCoord()) {
|
|
|
|
// Loop over the GEMM K dimension
|
|
CUTLASS_PRAGMA_NO_UNROLL
|
|
for (int k = 0; k < problem_size.k(); ++k) {
|
|
|
|
// Fetch a slice of the A matrix - zip into complex values
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < OutputTile::kW; ++i) {
|
|
if (output_coord.row() + i < problem_size.m()) {
|
|
MatrixCoord coord(output_coord.row() + i, k);
|
|
A_tile[i].real() = tensor_a.first.at(coord);
|
|
A_tile[i].imag() = tensor_a.second.at(coord);
|
|
}
|
|
}
|
|
|
|
// Fetch a slice of the B matrix - zip into complex values
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int j = 0; j < OutputTile::kH; ++j) {
|
|
if (output_coord.column() + j < problem_size.n()) {
|
|
MatrixCoord coord(k, output_coord.column() + j);
|
|
B_tile[j].real() = tensor_b.first.at(coord);
|
|
B_tile[j].imag() = tensor_b.second.at(coord);
|
|
}
|
|
}
|
|
|
|
// Compute an accumulated matrix product on complex values
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int j = 0; j < OutputTile::kH; ++j) {
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < OutputTile::kW; ++i) {
|
|
accum[j][i] = detail::inner_product(A_tile[i], B_tile[j], accum[j][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Performs linear scaling of matrix product and updates output tensor
|
|
CUTLASS_HOST_DEVICE
|
|
Gemm & epilogue(
|
|
gemm::GemmCoord problem_size,
|
|
ComplexScalar alpha,
|
|
ComplexScalar beta,
|
|
TensorRefC tensor_c,
|
|
MatrixCoord output_coord = MatrixCoord()) {
|
|
|
|
// Update the output tensor
|
|
for (int j = 0; j < OutputTile::kH; ++j) {
|
|
for (int i = 0; i < OutputTile::kW; ++i) {
|
|
MatrixCoord coord = output_coord + MatrixCoord(i, j);
|
|
if (coord < problem_size.mn()) {
|
|
|
|
ComplexScalar source(
|
|
tensor_c.first.at(coord),
|
|
tensor_c.second.at(coord)
|
|
);
|
|
|
|
// Final calculation is performed in data type of scalars
|
|
ComplexScalar result = alpha * ComplexScalar(accum[j][i].real(), accum[j][i].imag()) + beta * source;
|
|
|
|
// Unzip and convert into output tensor data type
|
|
tensor_c.first.at(coord) = detail::Cast<ScalarType, RealScalarC>::apply(result.real());
|
|
tensor_c.second.at(coord) = detail::Cast<ScalarType, RealScalarC>::apply(result.imag());
|
|
}
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace thread
|
|
} // namespace device
|
|
} // namespace reference
|
|
} // namespace cutlass
|