cutlass/tools/util/tensor_view_io.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

159 lines
4.9 KiB
C++

/***************************************************************************************************
* Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/core_io.h"
#include "cutlass/tensor_view.h"
namespace cutlass {
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Helper to write the least significant rank of a TensorView
template <
typename Storage_,
int Rank_,
typename MapFunc_,
int StorageRank_,
typename Index_,
typename LongIndex_
>
inline std::ostream & TensorView_WriteLeastSignificantRank(
std::ostream& out,
cutlass::TensorView<
Storage_,
Rank_,
MapFunc_,
StorageRank_,
Index_,
LongIndex_> const& tensor,
cutlass::Coord<Rank_> const &start_coord,
int rank,
std::streamsize width) {
for (int idx = 0; idx < tensor.size(rank); ++idx) {
Coord<Rank_> coord(start_coord);
coord[rank] = idx;
if (idx) {
out.width(0);
out << ", ";
}
if (idx || coord) {
out.width(width);
}
out << ScalarIO<Storage_>(tensor.at(coord));
}
return out;
}
/// Helper to write a rank of a TensorView
template <
typename Storage_,
int Rank_,
typename MapFunc_,
int StorageRank_,
typename Index_,
typename LongIndex_
>
inline std::ostream & TensorView_WriteRank(
std::ostream& out,
cutlass::TensorView<
Storage_,
Rank_,
MapFunc_,
StorageRank_,
Index_,
LongIndex_> const& tensor,
cutlass::Coord<Rank_> const &start_coord,
int rank,
std::streamsize width) {
// If called on the least significant rank, write the result as a row
if (rank + 1 == Rank_) {
return TensorView_WriteLeastSignificantRank(out, tensor, start_coord, rank, width);
}
// Otherwise, write a sequence of rows and newlines
for (int idx = 0; idx < tensor.size(rank); ++idx) {
Coord<Rank_> coord(start_coord);
coord[rank] = idx;
if (rank + 2 == Rank_) {
// Write least significant ranks asa matrix with rows delimited by ";\n"
out << (idx ? ";\n" : "");
TensorView_WriteLeastSignificantRank(out, tensor, coord, rank + 1, width);
}
else {
// Higher ranks are separated by newlines
out << (idx ? "\n" : "");
TensorView_WriteRank(out, tensor, coord, rank + 1, width);
}
}
return out;
}
} // namespace detail
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Prints human-readable representation of a TensorView to an ostream
template <
typename Storage_,
int Rank_,
typename MapFunc_,
int StorageRank_,
typename Index_,
typename LongIndex_
>
inline std::ostream& operator<<(
std::ostream& out,
TensorView<
Storage_,
Rank_,
MapFunc_,
StorageRank_,
Index_,
LongIndex_> const& tensor) {
// Prints a TensorView according to the following conventions:
// - least significant rank is printed as rows separated by ";\n"
// - all greater ranks are delimited with newlines
//
// The result is effectively a whitespace-delimited series of 2D matrices.
return detail::TensorView_WriteRank(out, tensor, Coord<Rank_>(), 0, out.width());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass