216 lines
6.6 KiB
C++
216 lines
6.6 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Kernel performing a reduction over densely packed tensors in global memory
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/device_kernel.h"
|
|
#include "cutlass/reduction/kernel/reduce_split_k.h"
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace reduction {
|
|
namespace device {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <
|
|
typename ReductionKernel_
|
|
>
|
|
class ReduceSplitK {
|
|
public:
|
|
using ReductionKernel = ReductionKernel_;
|
|
|
|
using Shape = typename ReductionKernel::Shape;
|
|
using ReductionOp = typename ReductionKernel::ReductionOp;
|
|
using OutputOp = typename ReductionKernel::OutputOp;
|
|
|
|
using ElementWorkspace = typename ReductionKernel::ElementWorkspace;
|
|
using ElementAccumulator = typename ReductionKernel::ElementAccumulator;
|
|
using ElementOutput = typename ReductionKernel::ElementOutput;
|
|
|
|
using WorkspaceTensorRef = typename ReductionKernel::WorkspaceTensorRef;
|
|
using OutputTensorRef = typename ReductionKernel::OutputTensorRef;
|
|
|
|
/// Argument structure
|
|
struct Arguments {
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
MatrixCoord problem_size;
|
|
int partitions;
|
|
size_t partition_stride;
|
|
WorkspaceTensorRef workspace;
|
|
OutputTensorRef destination;
|
|
OutputTensorRef source;
|
|
typename OutputOp::Params output;
|
|
typename ReductionOp::Params reduction;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Default ctor
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments() :
|
|
problem_size(0, 0),
|
|
partitions(1),
|
|
partition_stride(0) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments(
|
|
MatrixCoord const & problem_size
|
|
):
|
|
problem_size(problem_size) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments(
|
|
MatrixCoord problem_size_,
|
|
int partitions_,
|
|
size_t partition_stride_,
|
|
WorkspaceTensorRef workspace_,
|
|
OutputTensorRef destination_,
|
|
OutputTensorRef source_,
|
|
typename OutputOp::Params output_ = typename OutputOp::Params(),
|
|
typename ReductionOp::Params reduction_ = typename ReductionOp::Params()
|
|
):
|
|
problem_size(problem_size_),
|
|
partitions(partitions_),
|
|
partition_stride(partition_stride_),
|
|
workspace(workspace_),
|
|
destination(destination_),
|
|
source(source_),
|
|
output(output_),
|
|
reduction(reduction_)
|
|
{
|
|
|
|
}
|
|
|
|
};
|
|
|
|
private:
|
|
/// Kernel parameters object
|
|
typename ReductionKernel::Params params_;
|
|
|
|
public:
|
|
/// Constructs Reduction SplitK
|
|
ReduceSplitK() { }
|
|
|
|
/// Determines whether the ReduceSplitK can execute the given problem.
|
|
static Status can_implement(Arguments const &args) {
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Gets the workspace size
|
|
static size_t get_workspace_size(Arguments const &args) {
|
|
// needs no additional workspace
|
|
return 0;
|
|
}
|
|
|
|
/// Initializes Reduction state from arguments.
|
|
Status initialize(
|
|
Arguments const &args,
|
|
void *workspace = nullptr,
|
|
cudaStream_t stream = nullptr) {
|
|
|
|
// initialize the params structure from the arguments
|
|
params_ = typename ReductionKernel::Params(
|
|
args.problem_size,
|
|
args.partitions,
|
|
args.partition_stride,
|
|
args.workspace,
|
|
args.destination,
|
|
args.source,
|
|
args.output,
|
|
args.reduction
|
|
);
|
|
|
|
return Status::kSuccess;
|
|
|
|
}
|
|
|
|
/// Initializes Reduction kernel state from arguments.
|
|
Status update(Arguments const &args, void *workspace = nullptr) {
|
|
|
|
// update the params structure from the arguments
|
|
params_.workspace.reset(args.workspace.non_const_ref().data());
|
|
params_.destination.reset(args.destination.non_const_ref().data());
|
|
params_.source.reset(args.source.non_const_ref().data());
|
|
params_.output = args.output;
|
|
params_.reduction = args.reduction;
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status run(cudaStream_t stream = nullptr) {
|
|
|
|
//
|
|
// Launch reduction kernel
|
|
//
|
|
dim3 block = ReductionKernel::block_shape();
|
|
dim3 grid = ReductionKernel::grid_shape(params_.problem_size);
|
|
|
|
Kernel<ReductionKernel><<< grid, block, 0, stream >>>(params_);
|
|
|
|
cudaError_t result = cudaGetLastError();
|
|
|
|
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
|
|
}
|
|
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(cudaStream_t stream = nullptr) {
|
|
return run(stream);
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(
|
|
Arguments const &args,
|
|
void *workspace = nullptr,
|
|
cudaStream_t stream = nullptr) {
|
|
|
|
Status status = initialize(args, workspace, stream);
|
|
|
|
if (status == Status::kSuccess) {
|
|
status = run(stream);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace kernel
|
|
} // namespace reduction
|
|
} // namespace cutlass
|