cutlass/include/cutlass/reduction/device/reduce_split_k.h
Peter Han 92393b2676 Bugfix: memsetAsync uses wrong default stream
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-03-23 21:11:42 +08:00

216 lines
6.6 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Kernel performing a reduction over densely packed tensors in global memory
*/
#pragma once
#include "cutlass/device_kernel.h"
#include "cutlass/reduction/kernel/reduce_split_k.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace reduction {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ReductionKernel_
>
class ReduceSplitK {
public:
using ReductionKernel = ReductionKernel_;
using Shape = typename ReductionKernel::Shape;
using ReductionOp = typename ReductionKernel::ReductionOp;
using OutputOp = typename ReductionKernel::OutputOp;
using ElementWorkspace = typename ReductionKernel::ElementWorkspace;
using ElementAccumulator = typename ReductionKernel::ElementAccumulator;
using ElementOutput = typename ReductionKernel::ElementOutput;
using WorkspaceTensorRef = typename ReductionKernel::WorkspaceTensorRef;
using OutputTensorRef = typename ReductionKernel::OutputTensorRef;
/// Argument structure
struct Arguments {
//
// Data members
//
MatrixCoord problem_size;
int partitions;
size_t partition_stride;
WorkspaceTensorRef workspace;
OutputTensorRef destination;
OutputTensorRef source;
typename OutputOp::Params output;
typename ReductionOp::Params reduction;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments() :
problem_size(0, 0),
partitions(1),
partition_stride(0) { }
CUTLASS_HOST_DEVICE
Arguments(
MatrixCoord const & problem_size
):
problem_size(problem_size) { }
CUTLASS_HOST_DEVICE
Arguments(
MatrixCoord problem_size_,
int partitions_,
size_t partition_stride_,
WorkspaceTensorRef workspace_,
OutputTensorRef destination_,
OutputTensorRef source_,
typename OutputOp::Params output_ = typename OutputOp::Params(),
typename ReductionOp::Params reduction_ = typename ReductionOp::Params()
):
problem_size(problem_size_),
partitions(partitions_),
partition_stride(partition_stride_),
workspace(workspace_),
destination(destination_),
source(source_),
output(output_),
reduction(reduction_)
{
}
};
private:
/// Kernel parameters object
typename ReductionKernel::Params params_;
public:
/// Constructs Reduction SplitK
ReduceSplitK() { }
/// Determines whether the ReduceSplitK can execute the given problem.
static Status can_implement(Arguments const &args) {
return Status::kSuccess;
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
// needs no additional workspace
return 0;
}
/// Initializes Reduction state from arguments.
Status initialize(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
// initialize the params structure from the arguments
params_ = typename ReductionKernel::Params(
args.problem_size,
args.partitions,
args.partition_stride,
args.workspace,
args.destination,
args.source,
args.output,
args.reduction
);
return Status::kSuccess;
}
/// Initializes Reduction kernel state from arguments.
Status update(Arguments const &args, void *workspace = nullptr) {
// update the params structure from the arguments
params_.workspace.reset(args.workspace.non_const_ref().data());
params_.destination.reset(args.destination.non_const_ref().data());
params_.source.reset(args.source.non_const_ref().data());
params_.output = args.output;
params_.reduction = args.reduction;
return Status::kSuccess;
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
//
// Launch reduction kernel
//
dim3 block = ReductionKernel::block_shape();
dim3 grid = ReductionKernel::grid_shape(params_.problem_size);
Kernel<ReductionKernel><<< grid, block, 0, stream >>>(params_);
cudaError_t result = cudaGetLastError();
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace reduction
} // namespace cutlass