
* Enabled convolution with epilogue fusion for Volta Tensor Cores. * Compilation fixes * Disabled testing Volta on Ampere architectures.
122 lines
5.3 KiB
Plaintext
122 lines
5.3 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide Implicit GEMM interface
|
|
*/
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
|
|
#include "cutlass/epilogue/thread/activation.h"
|
|
|
|
#include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h"
|
|
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
|
|
|
#include "conv2d_with_broadcast_testbed.h"
|
|
|
|
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED)
|
|
|
|
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual))
|
|
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
|
|
// This is because the activation needs to be applied to the fully accumulated output of the Conv2d op,
|
|
// which only the last thread block would have an access to, before applying BinaryOp.
|
|
// The epilogue functor in the last thread block would have to be given three inputs, namely
|
|
// partial outputs, bias, and residual, but this is not supported in the current interface.
|
|
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
|
|
template <
|
|
typename ElementAccumulator,
|
|
template<typename T> class ActivationOp,
|
|
template<typename T> class BinaryOp,
|
|
template<typename T> class UnaryOp,
|
|
bool TestSplitK = false
|
|
>
|
|
void TestResidaulBlock() {
|
|
using ElementA = cutlass::half_t;
|
|
using ElementB = cutlass::half_t;
|
|
using ElementC = cutlass::half_t;
|
|
using ElementD = ElementC;
|
|
using ElementCompute = ElementAccumulator;
|
|
|
|
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
|
|
ElementD,
|
|
ElementAccumulator,
|
|
ElementCompute,
|
|
ElementC,
|
|
8,
|
|
ActivationOp,
|
|
BinaryOp,
|
|
UnaryOp
|
|
>;
|
|
|
|
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
|
|
ElementA, cutlass::layout::TensorNHWC,
|
|
ElementB, cutlass::layout::TensorNHWC,
|
|
ElementC, cutlass::layout::TensorNHWC,
|
|
ElementAccumulator,
|
|
cutlass::arch::OpClassTensorOp,
|
|
cutlass::arch::Sm70,
|
|
cutlass::gemm::GemmShape<128, 128, 32>,
|
|
cutlass::gemm::GemmShape<64, 64, 32>,
|
|
cutlass::gemm::GemmShape<8, 8, 4>,
|
|
EpilogueOutputOp,
|
|
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
|
2,
|
|
cutlass::arch::OpMultiplyAdd,
|
|
cutlass::conv::IteratorAlgorithm::kOptimized
|
|
>::Kernel;
|
|
|
|
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
|
|
|
struct ReferenceOp {
|
|
using OutputOp = typename Conv2dFprop::EpilogueOutputOp;
|
|
using ElementZ = typename OutputOp::ElementZ;
|
|
|
|
ActivationOp<ElementCompute> activation;
|
|
BinaryOp<ElementCompute> binary_op;
|
|
UnaryOp<ElementCompute> unary_op;
|
|
|
|
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) {
|
|
Z = ElementZ(unary_op(binary_op(activation(conv2d), residual)));
|
|
}
|
|
};
|
|
|
|
bool passed = test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop, ReferenceOp, true, TestSplitK>();
|
|
EXPECT_TRUE(passed);
|
|
}
|
|
|
|
TEST(SM70_Device_Conv2d_Fprop_With_Residual_Block_Plus_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
|
128x128_32x2_64x64x32) {
|
|
// Resnet
|
|
TestResidaulBlock<float, cutlass::epilogue::thread::ReLu, cutlass::plus, cutlass::epilogue::thread::Identity>();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#endif // CUTLASS_ARCH_MMA_SM70_SUPPORTED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|