cutlass/test/unit/conv/device/conv2d_fprop_with_broadcast_sm70.cu
Andrew Kerr 8a951b2940
Enable convolution with fused epilogue for Volta Tensor Cores (#402)
* Enabled convolution with epilogue fusion for Volta Tensor Cores.

* Compilation fixes

* Disabled testing Volta on Ampere architectures.
2022-01-30 23:24:50 -05:00

122 lines
5.3 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide Implicit GEMM interface
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "conv2d_with_broadcast_testbed.h"
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED)
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual))
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
// This is because the activation needs to be applied to the fully accumulated output of the Conv2d op,
// which only the last thread block would have an access to, before applying BinaryOp.
// The epilogue functor in the last thread block would have to be given three inputs, namely
// partial outputs, bias, and residual, but this is not supported in the current interface.
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
template <
typename ElementAccumulator,
template<typename T> class ActivationOp,
template<typename T> class BinaryOp,
template<typename T> class UnaryOp,
bool TestSplitK = false
>
void TestResidaulBlock() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementD = ElementC;
using ElementCompute = ElementAccumulator;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
ElementD,
ElementAccumulator,
ElementCompute,
ElementC,
8,
ActivationOp,
BinaryOp,
UnaryOp
>;
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm70,
cutlass::gemm::GemmShape<128, 128, 32>,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<8, 8, 4>,
EpilogueOutputOp,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
struct ReferenceOp {
using OutputOp = typename Conv2dFprop::EpilogueOutputOp;
using ElementZ = typename OutputOp::ElementZ;
ActivationOp<ElementCompute> activation;
BinaryOp<ElementCompute> binary_op;
UnaryOp<ElementCompute> unary_op;
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) {
Z = ElementZ(unary_op(binary_op(activation(conv2d), residual)));
}
};
bool passed = test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop, ReferenceOp, true, TestSplitK>();
EXPECT_TRUE(passed);
}
TEST(SM70_Device_Conv2d_Fprop_With_Residual_Block_Plus_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
128x128_32x2_64x64x32) {
// Resnet
TestResidaulBlock<float, cutlass::epilogue::thread::ReLu, cutlass::plus, cutlass::epilogue::thread::Identity>();
}
////////////////////////////////////////////////////////////////////////////////
#endif // CUTLASS_ARCH_MMA_SM70_SUPPORTED
////////////////////////////////////////////////////////////////////////////////