138 lines
5.5 KiB
Markdown
138 lines
5.5 KiB
Markdown
# PyCUTLASS: CUTLASS Python Interface
|
|
|
|
PyCUTLASS is a python interface of CUTLASS C++ template library. PyCUTLASS takes user-defined operation descriptions, emits C++ code, and compiles it with `nvcc` or `nvrtc`. It also provides wrappers for user-provide arguments from [numpy](https://numpy.org/), [torch](https://pytorch.org/), and [cupy](https://github.com/cupy/cupy) and encode them to kernel's parameters.
|
|
|
|
```python
|
|
import pycutlass
|
|
from pycutlass import *
|
|
import torch
|
|
|
|
pycutlass.get_memory_pool(2**8, 2**32)
|
|
|
|
math_inst = MathInstruction(
|
|
[1, 1, 1], cutlass.float32, cutlass.float32, cutlass.float32,
|
|
cutlass.OpClass.Simt, MathOperation.multiply_add
|
|
)
|
|
|
|
tile_description = TileDescription(
|
|
[128, 128, 8], 4, [2, 4, 1],
|
|
math_inst
|
|
)
|
|
|
|
A = TensorDescription(
|
|
cutlass.float32, cutlass.RowMajor, 1
|
|
)
|
|
|
|
B = TensorDescription(
|
|
cutlass.float32, cutlass.RowMajor, 1
|
|
)
|
|
|
|
C = TensorDescription(
|
|
cutlass.float32, cutlass.RowMajor, 1
|
|
)
|
|
|
|
epilogue_functor = LinearCombination(cutlass.float32, 1, cutlass.float32, cutlass.float32)
|
|
|
|
operation = GemmOperationUniversal(
|
|
arch=80, tile_description=tile_description,
|
|
A=A, B=B, C=C,
|
|
epilogue_functor=epilogue_functor,
|
|
swizzling_functor=cutlass.IdentitySwizzle1
|
|
)
|
|
|
|
pycutlass.compiler.add_module([operation,])
|
|
|
|
problem_size = cutlass.gemm.GemmCoord(512, 256, 128)
|
|
|
|
tensor_A = torch.ceil(torch.empty(size=(problem_size.m(), problem_size.k()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
|
|
tensor_B = torch.ceil(torch.empty(size=(problem_size.k(), problem_size.n()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
|
|
tensor_C = torch.ceil(torch.empty(size=(problem_size.m(), problem_size.n()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
|
|
tensor_D = torch.empty_like(tensor_C)
|
|
|
|
|
|
alpha = 1.0
|
|
beta = 0.0
|
|
|
|
arguments = GemmArguments(
|
|
operation=operation, problem_size=problem_size,
|
|
A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D,
|
|
output_op=operation.epilogue_type(alpha, beta),
|
|
gemm_mode=cutlass.gemm.Mode.Gemm, split_k_splices=1
|
|
)
|
|
|
|
operation.run(arguments)
|
|
|
|
arguments.sync()
|
|
|
|
tensor_D_ref = alpha * tensor_A @ tensor_B + beta * tensor_C
|
|
|
|
assert torch.equal(tensor_D, tensor_D_ref)
|
|
```
|
|
PyCUTLASS also provides infrastructures for profiling, compiled artifact management, and pool memory manager
|
|
|
|
## Supported Features
|
|
PyCUTLASS currently supports following operations:
|
|
* GEMM with mode {Serial, Parallel Split K, Batched GEMM, Array GEMM}, op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {RowMajor, ColumnMajor, Row/ColumnMajorInterleaved<32> for int8}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, swizzling functions {IdentitySwizzle<1,2,4,8>, HorizontalSwizzle, BatchedIdentitySwizzle}, and epilogue {LinearCombination, LinearCombinationClamp}
|
|
* GEMM grouped with op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {RowMajor, ColumnMajor}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, scheduling mode {Host, Device}, and epilogue {LinearCombination, LinearCombinationClamp}.
|
|
* Conv2d with {Fprop, Dgrad, Wgrad}, op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {Tensor NHWC, TensorNC32HW32 and TensorC32RSK for int8}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, split-k mode {Parallel, Serial}, and epilogue {LinearCombination, LinearCombinationClamp}
|
|
|
|
The tiling size of above operations can also be customized.
|
|
|
|
## Installation
|
|
|
|
### Using Docker
|
|
You can run the PyCUTLASS on NGC PyTorch container.
|
|
```shell
|
|
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:22.09-py3
|
|
```
|
|
PyCUTLASS requires additional dependency Boost C++ library, which can be installed with
|
|
```bash
|
|
apt-get update
|
|
apt-get -y install libboost-all-dev
|
|
```
|
|
|
|
|
|
|
|
### Environment variables
|
|
PyCUTLASSS requires two environment variables:
|
|
* `CUTLASS_PATH`: the root directory of CUTLASS
|
|
* `CUDA_INSTALL_PATH`: the directory where cuda toolkit is installed
|
|
|
|
After setting these two environment variables, PyCUTLASS can be installed with
|
|
```shell
|
|
cd $CUTLASS_PATH/tools/library/scripts/pycutlass && bash build.sh
|
|
```
|
|
|
|
## Examples
|
|
Examples can be found in [$CUTLASS_PATH/examples/40_cutlass_py](examples/40_cutlass_py)
|
|
|
|
## Test
|
|
The test cases are listed in `$CUTLASS_PATH//tools/library/scripts/pycutlass/test`. The unit test can be run with
|
|
```shell
|
|
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/test/unit && python test_sm80.py
|
|
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/test/example && run_all_example.sh
|
|
```
|
|
|
|
## build documentation
|
|
Run
|
|
```shell
|
|
bash build_doc.sh
|
|
```
|
|
|
|
|
|
## Troubleshooting
|
|
|
|
### Issue 1: permission denied
|
|
Building PyCUTLASS requires installing dependencies to python. So conda could an option if you don't have permission.
|
|
|
|
### Issue 2: rmm: module not found
|
|
PyCUTLASS manages the device memory with [RMM](https://github.com/rapidsai/rmm). Our `build.sh` automatically pull the [rmm branch-22.08](https://github.com/rapidsai/rmm/tree/branch-22.08) from github and build it from source. The rmm is allocated at `$CUTLASS_PATH/tools/library/scripts/pycutlass/rmm`. It requires `cmake > 3.20.1`. If the build fails, it can be manually fixed with the following steps:
|
|
```shell
|
|
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/rmm && ./build.sh librmm rmm
|
|
|
|
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/rmm/python
|
|
python setup.py build_ext --inplace
|
|
python setup.py install
|
|
```
|
|
To test whether rmm is successfully installed, try `import rmm`. For other issues related to rmm, please check https://github.com/rapidsai/rmm/issues.
|