564 lines
20 KiB
Plaintext
564 lines
20 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/* \file
|
|
\brief Execution environment
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <stdexcept>
|
|
#include <iomanip>
|
|
#include <ios>
|
|
|
|
#include "cublas_helpers.h"
|
|
#include "sparse_gemm_operation_profiler.h"
|
|
#include "gpu_timer.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace profiler {
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Ctor
|
|
SparseGemmOperationProfiler::SparseGemmOperationProfiler(Options const &options):
|
|
OperationProfiler(
|
|
options,
|
|
library::OperationKind::kSparseGemm,
|
|
{
|
|
{ArgumentTypeID::kEnumerated, {"gemm_kind"}, "Variant of GEMM (e.g. gemm, planar complex, batched, ...)"},
|
|
{ArgumentTypeID::kInteger, {"m", "problem-size::m"}, "M dimension of the GEMM problem space"},
|
|
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the GEMM problem space"},
|
|
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the GEMM problem space"},
|
|
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
|
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
|
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
|
{ArgumentTypeID::kTensor, {"E"}, "Tensor storing the E operand"},
|
|
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
|
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
|
{ArgumentTypeID::kInteger, {"split_k_slices"}, "Number of partitions of K dimension"},
|
|
{ArgumentTypeID::kInteger, {"batch_count"}, "Number of GEMMs computed in one batch"},
|
|
}
|
|
) {
|
|
|
|
description_ = " Structured sparse GEMM. D = alpha * A*B + beta * C";
|
|
}
|
|
|
|
/// Destructor
|
|
SparseGemmOperationProfiler::~SparseGemmOperationProfiler() {
|
|
|
|
}
|
|
|
|
/// Prints usage statement for the math function
|
|
void SparseGemmOperationProfiler::print_usage(std::ostream &out) const {
|
|
out << "Sparse GEMM" << "\n\n";
|
|
|
|
OperationProfiler::print_usage(out);
|
|
}
|
|
|
|
/// Prints examples
|
|
void SparseGemmOperationProfiler::print_examples(std::ostream &out) const {
|
|
|
|
out << "\nExamples:\n\n"
|
|
<< "Profile a particular problem size:\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --m=1024 --n=1024 --k=128\n\n"
|
|
|
|
<< "Schmoo over problem size and beta:\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --m=1024:4096:256 --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
|
|
|
|
<< "Schmoo over accumulator types:\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --accumulator-type=f16,f32\n\n"
|
|
|
|
<< "Run when A is f16 with column-major and B is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --A=f16:column --B=*:row\n\n"
|
|
|
|
<< "Using various input value distribution:\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --dist=uniform,min:0,max:3\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --dist=gaussian,mean:0,stddev:3\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --dist=sequential,start:0,delta:1\n\n"
|
|
|
|
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
|
|
|
<< "Test your changes to gemm kernels with a quick functional test and save results in functional-test.csv:\n"
|
|
<< " $ cutlass_profiler --operation=SparseGemm \\ \n"
|
|
<< " --m=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
|
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
|
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
|
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
|
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
Status SparseGemmOperationProfiler::SparseGemmProblem::parse(
|
|
library::SparseGemmDescription const &operation_desc,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem) {
|
|
|
|
if (!arg_as_int(this->m, "m", problem_space, problem)) {
|
|
// default value
|
|
this->m = 1024;
|
|
}
|
|
|
|
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
|
// default value
|
|
this->n = 1024;
|
|
}
|
|
|
|
if (!arg_as_int(this->k, "k", problem_space, problem)) {
|
|
// default value
|
|
this->k = 1024;
|
|
}
|
|
|
|
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
|
// default value
|
|
this->split_k_slices = 1;
|
|
}
|
|
|
|
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
|
// default value
|
|
this->batch_count = 1;
|
|
}
|
|
|
|
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
if (!tensor_description_satisfies(operation_desc.E, "E", problem_space, problem)) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
if (!arg_as_scalar(
|
|
this->alpha,
|
|
operation_desc.element_epilogue,
|
|
"alpha",
|
|
problem_space,
|
|
problem)) {
|
|
|
|
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
|
return Status::kErrorInternal;
|
|
}
|
|
}
|
|
|
|
if (!arg_as_scalar(
|
|
this->beta,
|
|
operation_desc.element_epilogue,
|
|
"beta",
|
|
problem_space,
|
|
problem)) {
|
|
|
|
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
|
return Status::kErrorInternal;
|
|
}
|
|
}
|
|
|
|
this->elements_per_128b =
|
|
128 / library::sizeof_bits(operation_desc.A.element);
|
|
|
|
this->lda = DeviceAllocation::get_packed_layout(
|
|
operation_desc.A.layout,
|
|
{int(this->m), int(this->k) / int(this->sparse)})
|
|
.front();
|
|
|
|
this->ldb = DeviceAllocation::get_packed_layout(
|
|
operation_desc.B.layout, {int(this->k), int(this->n)}).front();
|
|
|
|
this->ldc = DeviceAllocation::get_packed_layout(
|
|
operation_desc.C.layout, {int(this->m), int(this->n)}).front();
|
|
|
|
this->lde =
|
|
DeviceAllocation::get_packed_layout(
|
|
operation_desc.E.layout,
|
|
{int(this->m), int(this->k / this->sparse / this->elements_per_128b)})
|
|
.front();
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Initializes a performance result
|
|
void SparseGemmOperationProfiler::SparseGemmProblem::initialize_result(
|
|
PerformanceResult &result,
|
|
library::SparseGemmDescription const &operation_desc,
|
|
ProblemSpace const &problem_space) {
|
|
|
|
result.arguments.resize(problem_space.rank());
|
|
|
|
set_argument(result, "gemm_kind", problem_space, library::to_string(operation_desc.gemm_kind));
|
|
|
|
set_argument(result, "A", problem_space,
|
|
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
|
|
|
set_argument(result, "B", problem_space,
|
|
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
|
|
|
set_argument(result, "C", problem_space,
|
|
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
|
|
|
set_argument(result, "E", problem_space,
|
|
std::string(library::to_string(operation_desc.E.element)) + ":" + library::to_string(operation_desc.E.layout));
|
|
|
|
set_argument(result, "m", problem_space, m);
|
|
set_argument(result, "n", problem_space, n);
|
|
set_argument(result, "k", problem_space, k);
|
|
|
|
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
|
set_argument(result, "batch_count", problem_space, batch_count);
|
|
|
|
set_argument(result, "alpha", problem_space,
|
|
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
|
|
|
set_argument(result, "beta", problem_space,
|
|
library::lexical_cast(beta, operation_desc.element_epilogue));
|
|
}
|
|
|
|
/// Extracts the problem dimensions
|
|
Status SparseGemmOperationProfiler::initialize_configuration(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem) {
|
|
|
|
library::SparseGemmDescription const &operation_desc =
|
|
static_cast<library::SparseGemmDescription const &>(operation->description());
|
|
|
|
if (operation_desc.gemm_kind != library::GemmKind::kSparse) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
Status status = problem_.parse(operation_desc, problem_space, problem);
|
|
|
|
if (status != Status::kSuccess) {
|
|
return status;
|
|
}
|
|
|
|
gemm_workspace_.configuration.problem_size.m() = int(problem_.m);
|
|
gemm_workspace_.configuration.problem_size.n() = int(problem_.n);
|
|
gemm_workspace_.configuration.problem_size.k() = int(problem_.k);
|
|
gemm_workspace_.configuration.lda = problem_.lda;
|
|
gemm_workspace_.configuration.ldb = problem_.ldb;
|
|
gemm_workspace_.configuration.ldc = problem_.ldc;
|
|
gemm_workspace_.configuration.ldd = problem_.ldc;
|
|
gemm_workspace_.configuration.lde = problem_.lde;
|
|
|
|
gemm_workspace_.arguments.A = nullptr;
|
|
gemm_workspace_.arguments.B = nullptr;
|
|
gemm_workspace_.arguments.C = nullptr;
|
|
gemm_workspace_.arguments.D = nullptr;
|
|
gemm_workspace_.arguments.E = nullptr;
|
|
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
|
gemm_workspace_.arguments.beta = problem_.beta.data();
|
|
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
|
|
|
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
|
|
|
return operation->can_implement(&gemm_workspace_.configuration, &gemm_workspace_.arguments);
|
|
}
|
|
|
|
/// Initializes the performance result
|
|
void SparseGemmOperationProfiler::initialize_result_(
|
|
PerformanceResult &result,
|
|
Options const &options,
|
|
library::SparseGemmDescription const &operation_desc,
|
|
ProblemSpace const &problem_space) {
|
|
|
|
result.provider = library::Provider::kCUTLASS;
|
|
result.disposition = Disposition::kNotRun;
|
|
result.status = Status::kSuccess;
|
|
result.operation_name = operation_desc.name;
|
|
|
|
problem_.initialize_result(result, operation_desc, problem_space);
|
|
|
|
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
|
|
|
// Input bytes read and Output bytes written for the gemm problem
|
|
result.bytes =
|
|
int64_t(library::sizeof_bits(operation_desc.A.element) * problem_.m / 8) *
|
|
problem_.k / problem_.sparse +
|
|
int64_t(library::sizeof_bits(operation_desc.B.element) * problem_.n / 8) *
|
|
problem_.k +
|
|
int64_t(library::sizeof_bits(operation_desc.C.element) * problem_.m / 8) *
|
|
problem_.n +
|
|
int64_t(library::sizeof_bits(operation_desc.E.element) * problem_.m / 8) *
|
|
problem_.k / problem_.sparse / problem_.elements_per_128b;
|
|
|
|
// Set is_beta_zero true if beta is zero
|
|
bool is_beta_zero = std::all_of(problem_.beta.begin(), problem_.beta.end(), [](uint8_t i) { return i==0; });
|
|
|
|
// Output bytes read for the gemm problem for non-zero beta values
|
|
if (!is_beta_zero) {
|
|
result.bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * problem_.m / 8) * problem_.n;
|
|
}
|
|
|
|
result.flops = 2 * (problem_.m * problem_.n * problem_.k + problem_.m * problem_.n);
|
|
result.runtime = 0;
|
|
|
|
}
|
|
|
|
/// Initializes workspace
|
|
Status SparseGemmOperationProfiler::initialize_workspace(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem) {
|
|
|
|
library::SparseGemmDescription const &operation_desc =
|
|
static_cast<library::SparseGemmDescription const &>(operation->description());
|
|
|
|
if (options.execution_mode != ExecutionMode::kDryRun) {
|
|
|
|
gemm_workspace_.A = device_context.allocate_tensor(
|
|
options,
|
|
"A",
|
|
operation_desc.A.element,
|
|
operation_desc.A.layout,
|
|
{int(problem_.m), int(problem_.k) / int(problem_.sparse)},
|
|
{int(problem_.lda)}
|
|
);
|
|
|
|
gemm_workspace_.B = device_context.allocate_tensor(
|
|
options,
|
|
"B",
|
|
operation_desc.B.element,
|
|
operation_desc.B.layout,
|
|
{int(problem_.k), int(problem_.n)},
|
|
{int(problem_.ldb)}
|
|
);
|
|
|
|
gemm_workspace_.C = device_context.allocate_tensor(
|
|
options,
|
|
"C",
|
|
operation_desc.C.element,
|
|
operation_desc.C.layout,
|
|
{int(problem_.m), int(problem_.n)},
|
|
{int(problem_.ldc)}
|
|
);
|
|
|
|
gemm_workspace_.Computed = device_context.allocate_tensor(
|
|
"D",
|
|
operation_desc.C.element,
|
|
operation_desc.C.layout,
|
|
{int(problem_.m), int(problem_.n)},
|
|
{int(problem_.ldc)}
|
|
);
|
|
|
|
gemm_workspace_.E = device_context.allocate_sparsemeta_tensor(
|
|
options,
|
|
"E",
|
|
operation_desc.E.element,
|
|
operation_desc.E.layout,
|
|
operation_desc.A.element,
|
|
{int(problem_.m), int(problem_.k) / int(problem_.sparse) / int(problem_.elements_per_128b)},
|
|
{int(problem_.lde)}
|
|
);
|
|
|
|
gemm_workspace_.Reference = device_context.allocate_tensor(
|
|
"Reference",
|
|
operation_desc.C.element,
|
|
operation_desc.C.layout,
|
|
{int(problem_.m), int(problem_.n)},
|
|
{int(problem_.ldc)}
|
|
);
|
|
|
|
gemm_workspace_.Reference->copy_from_device(gemm_workspace_.C->data());
|
|
}
|
|
|
|
//
|
|
// Initialize the CUTLASS operation
|
|
//
|
|
|
|
Status status = Status::kSuccess;
|
|
|
|
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
|
|
|
if (options.execution_mode != ExecutionMode::kDryRun) {
|
|
|
|
uint64_t workspace_size = operation->get_host_workspace_size(&gemm_workspace_.configuration);
|
|
gemm_workspace_.host_workspace.resize(workspace_size, 0);
|
|
|
|
workspace_size = operation->get_device_workspace_size(&gemm_workspace_.configuration);
|
|
gemm_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
|
|
|
status = operation->initialize(
|
|
&gemm_workspace_.configuration,
|
|
gemm_workspace_.host_workspace.data(),
|
|
gemm_workspace_.device_workspace.data());
|
|
}
|
|
|
|
//
|
|
// If CUTLASS is enabled, generate a result for it
|
|
//
|
|
|
|
results_.push_back(model_result_);
|
|
results_.back().provider = library::Provider::kCUTLASS;
|
|
results_.back().op_kind = library::OperationKind::kSparseGemm;
|
|
results_.back().disposition = Disposition::kNotRun;
|
|
|
|
for(auto &verification_provider : options.verification.providers) {
|
|
results_.back().verification_map[verification_provider] = Disposition::kNotRun;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Verifies CUTLASS against references
|
|
bool SparseGemmOperationProfiler::verify_cutlass(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem) {
|
|
|
|
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
|
return true;
|
|
}
|
|
|
|
if (options.execution_mode == ExecutionMode::kDryRun) {
|
|
return true;
|
|
}
|
|
|
|
// Initialize structure containing GEMM arguments
|
|
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
|
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
|
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
|
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
|
gemm_workspace_.arguments.E = gemm_workspace_.E->data();
|
|
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
|
gemm_workspace_.arguments.beta = problem_.beta.data();
|
|
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
|
|
|
//
|
|
// Run the CUTLASS operation
|
|
//
|
|
|
|
results_.back().status = operation->run(
|
|
&gemm_workspace_.arguments,
|
|
gemm_workspace_.host_workspace.data(),
|
|
gemm_workspace_.device_workspace.data());
|
|
|
|
if (results_.back().status != Status::kSuccess) {
|
|
results_.back().disposition = Disposition::kFailed;
|
|
return false;
|
|
}
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
if (result != cudaSuccess) {
|
|
results_.back().disposition = Disposition::kFailed;
|
|
return false;
|
|
}
|
|
|
|
// CUTLASS op ran the but not yet verified against any verification provider
|
|
results_.back().disposition = Disposition::kNotVerified;
|
|
|
|
//
|
|
// Run verification providers
|
|
//
|
|
|
|
if (options.verification.enabled) {
|
|
|
|
// Update disposition to worst case verification outcome among all
|
|
// verification providers which are supported
|
|
bool is_any_verification_run_passed = false;
|
|
|
|
for(auto &m : results_.back().verification_map) {
|
|
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
|
results_.back().disposition = m.second;
|
|
return true;
|
|
}
|
|
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
|
is_any_verification_run_passed = true;
|
|
}
|
|
}
|
|
|
|
if(is_any_verification_run_passed) {
|
|
results_.back().disposition = Disposition::kPassed;
|
|
}
|
|
}
|
|
|
|
// Return true means continue profiling
|
|
return true;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Measures performance results
|
|
bool SparseGemmOperationProfiler::profile(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem) {
|
|
|
|
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
|
|
|
// Initialize structure containing GEMM arguments
|
|
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
|
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
|
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
|
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
|
gemm_workspace_.arguments.E = gemm_workspace_.E->data();
|
|
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
|
gemm_workspace_.arguments.beta = problem_.beta.data();
|
|
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
|
|
|
results_.back().status = profile_cutlass_(
|
|
results_.back().runtime,
|
|
options,
|
|
operation,
|
|
&gemm_workspace_.arguments,
|
|
gemm_workspace_.host_workspace.data(),
|
|
gemm_workspace_.device_workspace.data()
|
|
);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace profiler
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|