720 lines
22 KiB
C++
720 lines
22 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/arch/arch.h"
|
|
#include "cutlass/device_kernel.h"
|
|
|
|
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
|
|
#include "cutlass/gemm/kernel/gemm.h"
|
|
|
|
#include "cutlass/gemm/kernel/default_gemm_complex.h"
|
|
#include "cutlass/gemm/device/default_gemm_configuration.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace gemm {
|
|
namespace device {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*! Gemm device-level operator. This is an interface to efficient CUTLASS GEMM
|
|
kernels that may be invoked from host code.
|
|
|
|
The contributions of this class are:
|
|
|
|
1. At compile time, it maps data types and high-level structural parameters
|
|
onto specific CUTLASS components.
|
|
|
|
2. At runtime, it maps logical arguments to GEMM problems to kernel
|
|
parameters.
|
|
|
|
3. At runtime, it launches kernels on the device.
|
|
|
|
The intent is to provide a convenient mechanism for interacting with most
|
|
plausible GEMM configurations for each supported architecture. Consequently,
|
|
not all parameters are exposed to the top-level interface. Rather, sensible
|
|
defaults at each level of the CUTLASS hierarchy are selected to tradeoff
|
|
simplicity of the interface with flexibility. We expect most configurations to
|
|
be specified at this level. Applications with more exotic requirements may
|
|
construct their kernels of interest using CUTLASS components at the
|
|
threadblock, warp, and thread levels of abstraction.
|
|
|
|
CUTLASS exposes computations using the functor design pattern in which objects
|
|
compose some internal state with an overloaded function call operator. This
|
|
enables decoupling of initialization from execution, possibly reducing
|
|
overhead during steady state phases of application execution.
|
|
|
|
CUTLASS device-level operators expose an Arguments structure encompassing each
|
|
logical input to the computation. This is distinct from the kernel-level
|
|
Params structure pattern which contains application-specific precomputed state
|
|
needed by the device code.
|
|
|
|
Example of a CUTLASS GEMM operator implementing the functionality of cuBLAS's
|
|
SGEMM NN is as follows:
|
|
|
|
//
|
|
// Instantiate the CUTLASS GEMM operator.
|
|
//
|
|
|
|
cutlass::gemm::device::Gemm<
|
|
float,
|
|
cutlass::layout::ColumnMajor,
|
|
float,
|
|
cutlass::layout::ColumnMajor,
|
|
float,
|
|
cutlass::layout::ColumnMajor
|
|
> gemm_op;
|
|
|
|
//
|
|
// Launch the GEMM operation on the device
|
|
//
|
|
|
|
cutlass::Status status = gemm_op({
|
|
{m, n, k}, // GemmCoord problem_size,
|
|
{A, lda}, // TensorRef<float, layout::ColumnMajor> ref_A,
|
|
{B, ldb}, // TensorRef<float, layout::ColumnMajor> ref_B,
|
|
{C, ldc}, // TensorRef<float, layout::ColumnMajor> ref_C,
|
|
{D, ldd}, // TensorRef<float, layout::ColumnMajor> ref_D,
|
|
{alpha, beta} // EpilogueOutputOp::Params epilogue_op_params
|
|
});
|
|
|
|
|
|
A simplified view of the template is listed below.
|
|
|
|
template <
|
|
/// Element type for A matrix operand
|
|
typename ElementA,
|
|
|
|
/// Layout type for A matrix operand
|
|
typename LayoutA,
|
|
|
|
/// Element type for B matrix operand
|
|
typename ElementB,
|
|
|
|
/// Layout type for B matrix operand
|
|
typename LayoutB,
|
|
|
|
/// Element type for C and D matrix operands
|
|
typename ElementC,
|
|
|
|
/// Layout type for C and D matrix operands
|
|
typename LayoutC,
|
|
|
|
/// Element type for internal accumulation
|
|
typename ElementAccumulator,
|
|
|
|
/// Operator class tag
|
|
typename OperatorClass,
|
|
|
|
/// Tag indicating architecture to tune for. This is the minimum SM that
|
|
/// supports the intended feature. The device kernel can be built
|
|
/// targeting any SM larger than this number.
|
|
typename ArchTag,
|
|
|
|
/// Threadblock-level tile size (concept: GemmShape)
|
|
typename ThreadblockShape,
|
|
|
|
/// Warp-level tile size (concept: GemmShape)
|
|
typename WarpShape,
|
|
|
|
/// Warp-level tile size (concept: GemmShape)
|
|
typename InstructionShape,
|
|
|
|
/// Epilogue output operator
|
|
typename EpilogueOutputOp,
|
|
|
|
/// Threadblock-level swizzling operator
|
|
typename ThreadblockSwizzle,
|
|
|
|
/// Number of stages used in the pipelined mainloop
|
|
int Stages
|
|
>
|
|
class Gemm;
|
|
*/
|
|
template <
|
|
/// Element type for A matrix operand
|
|
typename ElementA_,
|
|
/// Layout type for A matrix operand
|
|
typename LayoutA_,
|
|
/// Element type for B matrix operand
|
|
typename ElementB_,
|
|
/// Layout type for B matrix operand
|
|
typename LayoutB_,
|
|
/// Element type for C and D matrix operands
|
|
typename ElementC_,
|
|
/// Layout type for C and D matrix operands
|
|
typename LayoutC_,
|
|
/// Element type for internal accumulation
|
|
typename ElementAccumulator_ = ElementC_,
|
|
/// Operator class tag
|
|
typename OperatorClass_ = arch::OpClassSimt,
|
|
/// Tag indicating architecture to tune for.
|
|
typename ArchTag_ = arch::Sm70,
|
|
/// Threadblock-level tile size (concept: GemmShape)
|
|
typename ThreadblockShape_ = typename DefaultGemmConfiguration<
|
|
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
|
ElementAccumulator_>::ThreadblockShape,
|
|
/// Warp-level tile size (concept: GemmShape)
|
|
typename WarpShape_ = typename DefaultGemmConfiguration<
|
|
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
|
ElementAccumulator_>::WarpShape,
|
|
/// Instruction-level tile size (concept: GemmShape)
|
|
typename InstructionShape_ = typename DefaultGemmConfiguration<
|
|
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
|
ElementAccumulator_>::InstructionShape,
|
|
/// Epilogue output operator
|
|
typename EpilogueOutputOp_ = typename DefaultGemmConfiguration<
|
|
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
|
ElementAccumulator_>::EpilogueOutputOp,
|
|
/// Threadblock-level swizzling operator
|
|
typename ThreadblockSwizzle_ =
|
|
threadblock::GemmIdentityThreadblockSwizzle<>,
|
|
/// Number of stages used in the pipelined mainloop
|
|
int Stages =
|
|
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
|
|
ElementC_, ElementAccumulator_>::kStages,
|
|
/// Complex elementwise transformation on A operand
|
|
ComplexTransform TransformA = ComplexTransform::kNone,
|
|
/// Complex elementwise transformation on B operand
|
|
ComplexTransform TransformB = ComplexTransform::kNone,
|
|
/// Multiply-add operator
|
|
// (selects complex or gaussian complex)
|
|
typename Operator_ = arch::OpMultiplyAddComplex,
|
|
/// If true, kernel supports split-K with serial reduction
|
|
bool SplitKSerial = false>
|
|
class GemmComplex {
|
|
public:
|
|
|
|
using ElementA = ElementA_;
|
|
using LayoutA = LayoutA_;
|
|
using TensorRefA = TensorRef<ElementA const, LayoutA>;
|
|
using ElementB = ElementB_;
|
|
using LayoutB = LayoutB_;
|
|
using TensorRefB = TensorRef<ElementB const, LayoutB>;
|
|
using ElementC = ElementC_;
|
|
using LayoutC = LayoutC_;
|
|
using TensorRefC = TensorRef<ElementC const, LayoutC>;
|
|
using TensorRefD = TensorRef<ElementC, LayoutC>;
|
|
using ElementAccumulator = ElementAccumulator_;
|
|
using OperatorClass = OperatorClass_;
|
|
using ArchTag = ArchTag_;
|
|
using ThreadblockShape = ThreadblockShape_;
|
|
using WarpShape = WarpShape_;
|
|
using InstructionShape = InstructionShape_;
|
|
using EpilogueOutputOp = EpilogueOutputOp_;
|
|
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
|
static int const kStages = Stages;
|
|
static ComplexTransform const kTransformA = TransformA;
|
|
static ComplexTransform const kTransformB = TransformB;
|
|
using Operator = Operator_;
|
|
static bool const kSplitKSerial = SplitKSerial;
|
|
static int const kAlignmentA = 1;
|
|
static int const kAlignmentB = 1;
|
|
static int const kAlignmentC = EpilogueOutputOp::kCount;
|
|
|
|
/// Define the kernel
|
|
using GemmKernel = typename kernel::DefaultGemmComplex<
|
|
ElementA,
|
|
LayoutA,
|
|
ElementB,
|
|
LayoutB,
|
|
ElementC,
|
|
LayoutC,
|
|
ElementAccumulator,
|
|
OperatorClass,
|
|
ArchTag,
|
|
ThreadblockShape,
|
|
WarpShape,
|
|
InstructionShape,
|
|
EpilogueOutputOp,
|
|
ThreadblockSwizzle,
|
|
kStages,
|
|
kTransformA,
|
|
kTransformB,
|
|
Operator,
|
|
kSplitKSerial
|
|
>::GemmKernel;
|
|
|
|
/// Argument structure
|
|
struct Arguments {
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
GemmCoord problem_size;
|
|
TensorRef<ElementA const, LayoutA> ref_A;
|
|
TensorRef<ElementB const, LayoutB> ref_B;
|
|
TensorRef<ElementC const, LayoutC> ref_C;
|
|
TensorRef<ElementC, LayoutC> ref_D;
|
|
typename EpilogueOutputOp::Params epilogue;
|
|
int split_k_slices;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Default ctor
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments(): problem_size(0, 0, 0), split_k_slices(1) {
|
|
|
|
}
|
|
|
|
/// Constructs an Arguments structure
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments(
|
|
GemmCoord problem_size_,
|
|
TensorRef<ElementA const, LayoutA> ref_A_,
|
|
TensorRef<ElementB const, LayoutB> ref_B_,
|
|
TensorRef<ElementC const, LayoutC> ref_C_,
|
|
TensorRef<ElementC, LayoutC> ref_D_,
|
|
typename EpilogueOutputOp::Params epilogue_ =
|
|
typename EpilogueOutputOp::Params(),
|
|
int split_k_slices = 1
|
|
):
|
|
problem_size(problem_size_),
|
|
ref_A(ref_A_),
|
|
ref_B(ref_B_),
|
|
ref_C(ref_C_),
|
|
ref_D(ref_D_),
|
|
epilogue(epilogue_),
|
|
split_k_slices(split_k_slices) {
|
|
|
|
}
|
|
};
|
|
|
|
private:
|
|
|
|
/// Kernel parameters object
|
|
typename GemmKernel::Params params_;
|
|
|
|
public:
|
|
|
|
/// Constructs the GEMM.
|
|
GemmComplex() { }
|
|
|
|
/// Determines whether the GEMM can execute the given problem.
|
|
static Status can_implement(Arguments const &args) {
|
|
|
|
if (!kSplitKSerial && args.split_k_slices > 1) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Gets the workspace size
|
|
static size_t get_workspace_size(Arguments const &args) {
|
|
|
|
if (kSplitKSerial && args.split_k_slices > 1) {
|
|
|
|
// Determine grid shape
|
|
ThreadblockSwizzle threadblock_swizzle;
|
|
|
|
cutlass::gemm::GemmCoord tiled_shape = threadblock_swizzle.get_tiled_shape(
|
|
args.problem_size,
|
|
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
|
|
args.split_k_slices);
|
|
|
|
return sizeof(int) * size_t(tiled_shape.m()) * size_t(tiled_shape.n());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Initializes GEMM state from arguments.
|
|
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
|
|
|
|
// Determine grid shape
|
|
ThreadblockSwizzle threadblock_swizzle;
|
|
|
|
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
|
|
args.problem_size,
|
|
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
|
|
args.split_k_slices);
|
|
|
|
if (kSplitKSerial) {
|
|
if (args.split_k_slices > 1) {
|
|
if (!workspace) {
|
|
return Status::kErrorWorkspaceNull;
|
|
}
|
|
|
|
size_t bytes = get_workspace_size(args);
|
|
|
|
cudaError_t result = cudaMemsetAsync(workspace, 0, bytes, stream);
|
|
|
|
if (result != cudaSuccess) {
|
|
return Status::kErrorInternal;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
|
|
if (args.split_k_slices > 1) {
|
|
return Status::kErrorInvalidProblem;
|
|
}
|
|
}
|
|
|
|
// Initialize the Params structure
|
|
params_ = typename GemmKernel::Params{
|
|
args.problem_size,
|
|
grid_shape,
|
|
args.ref_A.non_const_ref(),
|
|
args.ref_B.non_const_ref(),
|
|
args.ref_C.non_const_ref(),
|
|
args.ref_D,
|
|
args.epilogue,
|
|
static_cast<int *>(workspace)
|
|
};
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Lightweight update given a subset of arguments
|
|
Status update(Arguments const &args, void *workspace = nullptr) {
|
|
|
|
if (kSplitKSerial && args.split_k_slices > 1) {
|
|
if (!workspace) {
|
|
return Status::kErrorWorkspaceNull;
|
|
}
|
|
}
|
|
|
|
params_.ref_A.reset(args.ref_A.non_const_ref().data());
|
|
params_.ref_B.reset(args.ref_B.non_const_ref().data());
|
|
params_.ref_C.reset(args.ref_C.non_const_ref().data());
|
|
params_.ref_D.reset(args.ref_D.data());
|
|
params_.semaphore = static_cast<int *>(workspace);
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status run(cudaStream_t stream = nullptr) {
|
|
|
|
ThreadblockSwizzle threadblock_swizzle;
|
|
|
|
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
|
|
dim3 block(GemmKernel::kThreadCount, 1, 1);
|
|
|
|
cudaError_t result;
|
|
|
|
int smem_size = int(sizeof(typename GemmKernel::SharedStorage));
|
|
if (smem_size >= (48 << 10)) {
|
|
result = cudaFuncSetAttribute(Kernel<GemmKernel>,
|
|
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
|
smem_size);
|
|
|
|
if (result != cudaSuccess) {
|
|
return Status::kErrorInternal;
|
|
}
|
|
|
|
result = cudaFuncSetAttribute(
|
|
Kernel<GemmKernel>,
|
|
cudaFuncAttributePreferredSharedMemoryCarveout, 100);
|
|
|
|
if (result != cudaSuccess) {
|
|
return Status::kErrorInternal;
|
|
}
|
|
}
|
|
|
|
cutlass::Kernel<GemmKernel><<<grid, block, smem_size, stream>>>(params_);
|
|
|
|
result = cudaGetLastError();
|
|
|
|
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(cudaStream_t stream = nullptr) {
|
|
return run(stream);
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(
|
|
Arguments const &args,
|
|
void *workspace = nullptr,
|
|
cudaStream_t stream = nullptr) {
|
|
|
|
Status status = initialize(args, workspace, stream);
|
|
|
|
if (status == Status::kSuccess) {
|
|
status = run(stream);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Parital specialization for column-major output exchanges problem size and operand.
|
|
template <
|
|
/// Element type for A matrix operand
|
|
typename ElementA_,
|
|
/// Layout type for A matrix operand
|
|
typename LayoutA_,
|
|
/// Element type for B matrix operand
|
|
typename ElementB_,
|
|
/// Layout type for B matrix operand
|
|
typename LayoutB_,
|
|
/// Element type for C and D matrix operands
|
|
typename ElementC_,
|
|
/// Element type for internal accumulation
|
|
typename ElementAccumulator_,
|
|
/// Operator class tag
|
|
typename OperatorClass_,
|
|
/// Tag indicating architecture to tune for
|
|
typename ArchTag_,
|
|
/// Threadblock-level tile size (concept: GemmShape)
|
|
typename ThreadblockShape_,
|
|
/// Warp-level tile size (concept: GemmShape)
|
|
typename WarpShape_,
|
|
/// Warp-level tile size (concept: GemmShape)
|
|
typename InstructionShape_,
|
|
/// Epilogue output operator
|
|
typename EpilogueOutputOp_,
|
|
/// Threadblock-level swizzling operator
|
|
typename ThreadblockSwizzle_,
|
|
/// Number of stages used in the pipelined mainloop
|
|
int Stages,
|
|
/// Complex elementwise transformation on A operand
|
|
ComplexTransform TransformA,
|
|
/// Complex elementwise transformation on B operand
|
|
ComplexTransform TransformB,
|
|
/// Multiply-add operator
|
|
// (selects complex or gaussian complex)
|
|
typename Operator_,
|
|
/// If true, kernel supports split-K as a serial reduction
|
|
bool SplitKSerial
|
|
>
|
|
class GemmComplex<
|
|
ElementA_,
|
|
LayoutA_,
|
|
ElementB_,
|
|
LayoutB_,
|
|
ElementC_,
|
|
layout::ColumnMajor, // partially specialized on LayoutC
|
|
ElementAccumulator_,
|
|
OperatorClass_,
|
|
ArchTag_,
|
|
ThreadblockShape_,
|
|
WarpShape_,
|
|
InstructionShape_,
|
|
EpilogueOutputOp_,
|
|
ThreadblockSwizzle_,
|
|
Stages,
|
|
TransformA,
|
|
TransformB,
|
|
Operator_,
|
|
SplitKSerial
|
|
> {
|
|
public:
|
|
|
|
using ElementA = ElementA_;
|
|
using LayoutA = LayoutA_;
|
|
using TensorRefA = TensorRef<ElementA const, LayoutA>;
|
|
using ElementB = ElementB_;
|
|
using LayoutB = LayoutB_;
|
|
using TensorRefB = TensorRef<ElementB const, LayoutB>;
|
|
using ElementC = ElementC_;
|
|
using LayoutC = layout::ColumnMajor;
|
|
using TensorRefC = TensorRef<ElementC const, LayoutC>;
|
|
using TensorRefD = TensorRef<ElementC, LayoutC>;
|
|
using ElementAccumulator = ElementAccumulator_;
|
|
using OperatorClass = OperatorClass_;
|
|
using ArchTag = ArchTag_;
|
|
using ThreadblockShape = ThreadblockShape_;
|
|
using WarpShape = WarpShape_;
|
|
using InstructionShape = InstructionShape_;
|
|
using EpilogueOutputOp = EpilogueOutputOp_;
|
|
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
|
static int const kStages = Stages;
|
|
using Operator = Operator_;
|
|
static bool const kSplitKSerial = SplitKSerial;
|
|
|
|
using UnderlyingOperator = GemmComplex<
|
|
ElementB,
|
|
typename layout::LayoutTranspose<LayoutB>::type,
|
|
ElementA,
|
|
typename layout::LayoutTranspose<LayoutA>::type,
|
|
ElementC,
|
|
layout::RowMajor,
|
|
ElementAccumulator,
|
|
OperatorClass,
|
|
ArchTag,
|
|
ThreadblockShape,
|
|
WarpShape,
|
|
InstructionShape,
|
|
EpilogueOutputOp,
|
|
ThreadblockSwizzle,
|
|
Stages,
|
|
TransformB,
|
|
TransformA,
|
|
Operator,
|
|
SplitKSerial
|
|
>;
|
|
|
|
static int const kAlignmentA = UnderlyingOperator::kAlignmentB;
|
|
static int const kAlignmentB = UnderlyingOperator::kAlignmentA;
|
|
static int const kAlignmentC = UnderlyingOperator::kAlignmentC;
|
|
static ComplexTransform const kTransformA = UnderlyingOperator::kTransformB;
|
|
static ComplexTransform const kTransformB = UnderlyingOperator::kTransformA;
|
|
|
|
using UnderlyingArguments = typename UnderlyingOperator::Arguments;
|
|
using GemmKernel = typename UnderlyingOperator::GemmKernel;
|
|
|
|
/// Argument structure
|
|
struct Arguments {
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
GemmCoord problem_size;
|
|
TensorRef<ElementA const, LayoutA> ref_A;
|
|
TensorRef<ElementB const, LayoutB> ref_B;
|
|
TensorRef<ElementC const, LayoutC> ref_C;
|
|
TensorRef<ElementC, LayoutC> ref_D;
|
|
typename EpilogueOutputOp::Params epilogue;
|
|
int split_k_slices;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Default ctor
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments() { }
|
|
|
|
/// Constructs an Arguments structure
|
|
CUTLASS_HOST_DEVICE
|
|
Arguments(
|
|
GemmCoord problem_size_,
|
|
TensorRef<ElementA const, LayoutA> ref_A_,
|
|
TensorRef<ElementB const, LayoutB> ref_B_,
|
|
TensorRef<ElementC const, LayoutC> ref_C_,
|
|
TensorRef<ElementC, LayoutC> ref_D_,
|
|
typename EpilogueOutputOp::Params epilogue_ =
|
|
typename EpilogueOutputOp::Params(),
|
|
int split_k_slices = 1
|
|
):
|
|
problem_size(problem_size_),
|
|
ref_A(ref_A_),
|
|
ref_B(ref_B_),
|
|
ref_C(ref_C_),
|
|
ref_D(ref_D_),
|
|
epilogue(epilogue_),
|
|
split_k_slices(split_k_slices) { }
|
|
};
|
|
|
|
private:
|
|
|
|
UnderlyingOperator underlying_operator_;
|
|
|
|
public:
|
|
|
|
/// Constructs the GEMM.
|
|
GemmComplex() { }
|
|
|
|
/// Helper to construct a transposed equivalent for the underying GEMM operator
|
|
static UnderlyingArguments to_underlying_arguments(Arguments const &args) {
|
|
return UnderlyingArguments(
|
|
{args.problem_size.n(), args.problem_size.m(), args.problem_size.k()},
|
|
{args.ref_B.data(), args.ref_B.stride(0)},
|
|
{args.ref_A.data(), args.ref_A.stride(0)},
|
|
{args.ref_C.data(), args.ref_C.stride(0)},
|
|
{args.ref_D.data(), args.ref_D.stride(0)},
|
|
args.epilogue,
|
|
args.split_k_slices
|
|
);
|
|
}
|
|
|
|
/// Determines whether the GEMM can execute the given problem.
|
|
static Status can_implement(Arguments const &args) {
|
|
|
|
return UnderlyingOperator::can_implement(to_underlying_arguments(args));
|
|
}
|
|
|
|
/// Gets the workspace size
|
|
static size_t get_workspace_size(Arguments const &args) {
|
|
|
|
return UnderlyingOperator::get_workspace_size(to_underlying_arguments(args));
|
|
}
|
|
|
|
/// Initializes GEMM state from arguments.
|
|
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
|
|
|
|
return underlying_operator_.initialize(to_underlying_arguments(args), workspace, stream);
|
|
}
|
|
|
|
/// Lightweight update given a subset of arguments
|
|
Status update(Arguments const &args, void *workspace = nullptr) {
|
|
|
|
return underlying_operator_.update(to_underlying_arguments(args), workspace);
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status run(cudaStream_t stream = nullptr) {
|
|
|
|
return underlying_operator_.run(stream);
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(cudaStream_t stream = nullptr) {
|
|
return run(stream);
|
|
}
|
|
|
|
/// Runs the kernel using initialized state.
|
|
Status operator()(
|
|
Arguments const &args,
|
|
void *workspace = nullptr,
|
|
cudaStream_t stream = nullptr) {
|
|
|
|
Status status = initialize(args, workspace, stream);
|
|
|
|
if (status == Status::kSuccess) {
|
|
status = run(stream);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace device
|
|
} // namespace gemm
|
|
} // namespace cutlass
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|