cutlass/tools/profiler/src/cublas_helpers.h
2022-04-23 15:02:38 -04:00

359 lines
10 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Helper functions for mapping CUTLASS concepts to cuBLAS.
*/
#pragma once
#if CUTLASS_ENABLE_CUBLAS
#include <cublas_v2.h>
#include "cutlass/cutlass.h"
#include "cutlass/library/library.h"
#include "cutlass/library/util.h"
#include "cutlass/blas3.h"
#include "options.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts a cuBLAS status to cutlass::Status
Status get_cutlass_status(cublasStatus_t cublas);
/// Converts a cuBLASS status to cutlass::profiler::Disposition
Disposition get_cutlass_disposition(cublasStatus_t cublas_status);
/// Maps a CUTLASS tensor layout to a cuBLAS transpose operation
bool get_cublas_transpose_operation(
cublasOperation_t &operation,
library::LayoutTypeID layout,
library::ComplexTransform transform = library::ComplexTransform::kNone);
/// Maps a CUTLASS numeric type to a cuBLAS data type enumeration
bool get_cublas_datatype(cublasDataType_t &data_type, library::NumericTypeID element_type);
/// Gets the cublas algorithm given threadblock tile dimensions and math opcode class
cublasGemmAlgo_t get_cublas_gemm_algo(
int cta_m,
int cta_n,
int cta_k,
library::OpcodeClassID opcode_class);
/// Returns a status if cuBLAS can satisfy a particular GEMM description
Status cublas_satisfies(library::GemmDescription const &desc);
/// Returns a status if cuBLAS can satisfy a particular RankK description
Status cublas_satisfies(library::RankKDescription const &desc);
/// Returns a status if cuBLAS can satisfy a particular TRMM description
Status cublas_satisfies(library::TrmmDescription const &desc);
/// Returns a status if cuBLAS can satisfy a particular SYMM/HEMM description
Status cublas_satisfies(library::SymmDescription const &desc);
/// This is a helper class to create cublasHandle_t automatically on CublasCreate object creation and
/// to destroy cublasHandle_t on CublasCreate object destruction.
/// Additionaly, it provides implicit cast from CublasCreate's object to cublasHandle_t's object
class CublasCreate {
private:
cublasHandle_t handle;
cublasStatus_t status;
public:
CublasCreate() {
status = cublasCreate(&handle);
}
~CublasCreate() {
cublasDestroy(handle);
}
/// Implicit cast CublasCreate object to cublasHandle_t
operator cublasHandle_t() const { return handle; }
/// returns cublasStatus_t for handle creation
cublasStatus_t get_cublas_create_status() { return status; }
};
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Selects one or more cuBLAS algorithms.
static void select_cublas_algorithms(
std::vector<cublasGemmAlgo_t> &algorithms,
Options const &options,
library::GemmDescription const &op_desc) {
library::OpcodeClassID const & opcode_class =
op_desc.tile_description.math_instruction.opcode_class;
switch (options.library.algorithm_mode) {
case AlgorithmMode::kMatching:
{
algorithms.push_back(get_cublas_gemm_algo(
op_desc.tile_description.threadblock_shape.m(),
op_desc.tile_description.threadblock_shape.n(),
op_desc.tile_description.threadblock_shape.k(),
opcode_class));
break;
}
case AlgorithmMode::kBest:
{
// Choose first enumerated mode. If none are enumerated, choose based on opcode class
// and evaluate all of them.
if (options.library.algorithms.empty()) {
// Enumerate all algorithms
if (opcode_class == library::OpcodeClassID::kSimt) {
for (int algo = CUBLAS_GEMM_DEFAULT;
algo <= CUBLAS_GEMM_ALGO23;
++algo) {
algorithms.push_back(cublasGemmAlgo_t(algo));
}
}
else {
for (int algo = CUBLAS_GEMM_DEFAULT_TENSOR_OP;
algo <= CUBLAS_GEMM_ALGO15_TENSOR_OP;
++algo) {
algorithms.push_back(cublasGemmAlgo_t(algo));
}
}
}
else {
// Use the listed algorithms
algorithms.reserve(options.library.algorithms.size());
for (int algo : options.library.algorithms) {
algorithms.push_back(reinterpret_cast<cublasGemmAlgo_t const &>(algo));
}
}
break;
}
case AlgorithmMode::kDefault:
{
// Use the library's default algorithm
algorithms.push_back((opcode_class == library::OpcodeClassID::kSimt ?
CUBLAS_GEMM_DEFAULT : CUBLAS_GEMM_DEFAULT_TENSOR_OP));
break;
}
default:
{
break;
}
}
}
/// Dispatcher to cublasGemmEx()
struct cublasGemmExDispatcher {
//
// Data members
//
library::GemmUniversalConfiguration configuration;
library::GemmUniversalArguments arguments;
// cublass-specific data structures to fill cublas API call arguments
cublasOperation_t trans_A;
cublasOperation_t trans_B;
cudaDataType_t data_type_A;
cudaDataType_t data_type_B;
cudaDataType_t data_type_C;
cudaDataType_t compute_data_type;
#if (__CUDACC_VER_MAJOR__ >= 11)
cublasComputeType_t compute_type;
#endif
cublasGemmAlgo_t algo;
Status status;
//
// Methods
//
cublasGemmExDispatcher(
library::GemmDescription const &op_desc,
library::GemmUniversalConfiguration configuration_,
library::GemmUniversalArguments arguments_,
cublasGemmAlgo_t algorithm = CUBLAS_GEMM_DFALT
);
/// Executes GEMM using these arguments
cublasStatus_t operator()(cublasHandle_t handle);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Dispatcher to cublas rank k update kernels
struct cublasRankKDispatcher {
//
// Data members
//
library::RankKConfiguration configuration;
library::RankKArguments arguments;
// cublass-specific data structures to fill cublas API call arguments
cublasOperation_t trans_A;
cublasFillMode_t uplo;
cudaDataType_t data_type_A;
cudaDataType_t data_type_C;
cudaDataType_t compute_data_type;
#if (__CUDACC_VER_MAJOR__ >= 11)
cublasComputeType_t compute_type;
#endif
int num_ranks; //(rank-k or rank-2k)
BlasMode blas_mode; //(symmetric or hermitian)
Status status;
//
// Methods
//
cublasRankKDispatcher(
library::RankKDescription const &op_desc,
library::RankKConfiguration configuration_,
library::RankKArguments arguments_
);
/// Executes RankK using these arguments
cublasStatus_t operator()(cublasHandle_t handle);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Dispatcher to cublasTrmm()
struct cublasTrmmDispatcher {
//
// Data members
//
library::TrmmConfiguration configuration;
library::TrmmArguments arguments;
// cublass-specific data structures to fill cublas API call arguments
cublasOperation_t trans_A;
cublasSideMode_t side;
cublasFillMode_t uplo;
cublasDiagType_t diag;
cudaDataType_t data_type_A;
cudaDataType_t data_type_B;
cudaDataType_t data_type_D;
cudaDataType_t compute_data_type;
#if (__CUDACC_VER_MAJOR__ >= 11)
cublasComputeType_t compute_type;
#endif
Status status;
//
// Methods
//
cublasTrmmDispatcher(
library::TrmmDescription const &op_desc,
library::TrmmConfiguration configuration_,
library::TrmmArguments arguments_
);
/// Executes TRMM using these arguments
cublasStatus_t operator()(cublasHandle_t handle);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Dispatcher to cublas symm/hemm update kernels
struct cublasSymmDispatcher {
//
// Data members
//
library::SymmConfiguration configuration;
library::SymmArguments arguments;
// cublass-specific data structures to fill cublas API call arguments
cublasSideMode_t side;
cublasFillMode_t uplo;
cudaDataType_t data_type_A;
cudaDataType_t data_type_B;
cudaDataType_t data_type_C;
cudaDataType_t compute_data_type;
#if (__CUDACC_VER_MAJOR__ >= 11)
cublasComputeType_t compute_type;
#endif
BlasMode blas_mode; //(symmetric or hermitian)
Status status;
//
// Methods
//
cublasSymmDispatcher(
library::SymmDescription const &op_desc,
library::SymmConfiguration configuration_,
library::SymmArguments arguments_
);
/// Executes Symm using these arguments
cublasStatus_t operator()(cublasHandle_t handle);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace detail
} // namespace profiler
} // namespace cutlass
#endif // #if CUTLASS_ENABLE_CUBLAS