
* Release 3.3.0 Adds support for mixed precision GEMMs On Hopper and Ampere Adds support for < 16B aligned GEMMs on Hopper Enhancements to EVT Enhancements to Python interface Enhancements to Sub-byte type handling in CuTe Several other bug-fixes and performance improvements. * minor doc update
185 lines
5.5 KiB
Python
185 lines
5.5 KiB
Python
################################################################################
|
|
#
|
|
# Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
################################################################################
|
|
|
|
"""
|
|
Utilities for expressing shapes
|
|
"""
|
|
|
|
from cutlass_library import (
|
|
ConvMode,
|
|
ConvKind,
|
|
LayoutType
|
|
)
|
|
from cutlass.backend.c_types import (
|
|
Conv2DProblemSize_,
|
|
GemmCoord_,
|
|
GemmCoordBatched_
|
|
)
|
|
|
|
|
|
class MatrixCoord:
|
|
def __init__(self, row, col):
|
|
self._row = row
|
|
self._col = col
|
|
|
|
@property
|
|
def row(self):
|
|
return self._row
|
|
|
|
@property
|
|
def column(self):
|
|
return self._col
|
|
|
|
def leading_dimension(self, layout: LayoutType) -> int:
|
|
"""
|
|
Returns the leading dimension for a matrix with layout ``layout`` and shape provided by the MatrixCoord.
|
|
|
|
:param layout: layout of matrix
|
|
:type layout: cutlass_library.LayoutType
|
|
|
|
:returns: leading dimension
|
|
:rtype: int
|
|
"""
|
|
if layout == LayoutType.RowMajor:
|
|
return self._col
|
|
elif layout == LayoutType.ColumnMajor:
|
|
return self._row
|
|
else:
|
|
raise Exception(f'Unsupported layout for leading dimension calculation: {layout}')
|
|
|
|
|
|
class GemmCoord:
|
|
def __init__(self, m: int, n: int, k: int):
|
|
self._m = m
|
|
self._n = n
|
|
self._k = k
|
|
|
|
@property
|
|
def m(self) -> int:
|
|
return self._m
|
|
|
|
@property
|
|
def n(self) -> int:
|
|
return self._n
|
|
|
|
@property
|
|
def k(self) -> int:
|
|
return self._k
|
|
|
|
@property
|
|
def mk(self) -> MatrixCoord:
|
|
return MatrixCoord(self._m, self._k)
|
|
|
|
@property
|
|
def mn(self) -> MatrixCoord:
|
|
return MatrixCoord(self._m, self._n)
|
|
|
|
@property
|
|
def kn(self) -> MatrixCoord:
|
|
return MatrixCoord(self._k, self._n)
|
|
|
|
@property
|
|
def ctype(self) -> GemmCoord_:
|
|
return GemmCoord_(self._m, self._n, self._k)
|
|
|
|
def batched_ctype(self, batch_count: int) -> GemmCoordBatched_:
|
|
return GemmCoordBatched_(self._m, self._n, self._k, batch_count)
|
|
|
|
|
|
class Conv2DProblemSize:
|
|
def __init__(
|
|
self, n: int, h: int, w: int, c: int,
|
|
k: int, r: int, s: int, c_: int,
|
|
pad_h: int, pad_w: int, stride_h: int, stride_w: int,
|
|
dilation_h: int, dilation_w: int, mode: ConvMode=ConvMode.CrossCorrelation,
|
|
split_k_slices: int=1, groups: int=1):
|
|
|
|
self.N = n
|
|
self.H = h
|
|
self.W = w
|
|
self.C = c
|
|
self.K = k
|
|
self.R = r
|
|
self.S = s
|
|
self.pad_h = pad_h
|
|
self.pad_w = pad_w
|
|
self.stride_h = stride_h
|
|
self.stride_w = stride_w
|
|
self.dilation_h = dilation_h
|
|
self.dilation_w = dilation_w
|
|
self.mode = int(mode)
|
|
self.split_k_slices = split_k_slices
|
|
self.groups = groups
|
|
self.P = ((h + pad_h * 2 - r * dilation_h) // stride_h) + 1
|
|
self.Q = ((w + pad_w * 2 - s * dilation_w) // stride_w) + 1
|
|
|
|
@property
|
|
def ctype(self) -> Conv2DProblemSize_:
|
|
return Conv2DProblemSize_(self)
|
|
|
|
def implicit_gemm_size(self, kind: ConvKind):
|
|
if kind == ConvKind.Fprop:
|
|
return GemmCoord(
|
|
self.N * self.P * self.Q,
|
|
self.K,
|
|
self.R * self.S * self.C // self.groups
|
|
)
|
|
elif kind == ConvKind.Dgrad:
|
|
return GemmCoord(
|
|
self.N * self.H * self.W,
|
|
self.C,
|
|
self.R * self.S * self.K
|
|
)
|
|
elif kind == ConvKind.Wgrad:
|
|
return GemmCoord(
|
|
self.K,
|
|
self.R * self.S * self.C,
|
|
self.N * self.P * self.Q
|
|
)
|
|
|
|
@staticmethod
|
|
def from_sizes(input_size, weight_size):
|
|
K, R, S, _ = weight_size
|
|
pad_h = R // 2
|
|
pad_w = S // 2
|
|
stride_h = 1
|
|
stride_w = 1
|
|
dilation_h = 1
|
|
dilation_w = 1
|
|
return Conv2DProblemSize(
|
|
*input_size,
|
|
*weight_size,
|
|
pad_h, pad_w,
|
|
stride_h, stride_w,
|
|
dilation_h, dilation_w
|
|
)
|