cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py
Vijay Thakkar 277bd6e537
CUTLASS 3.0.0 (#786)
* CUTLASS 3.0.0
2023-01-23 20:55:28 -05:00

262 lines
9.3 KiB
Python

#################################################################################################
#
# Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
import pycutlass
from pycutlass import *
from pycutlass.epilogue import LinearCombinationClamp
from pycutlass.test import *
import unittest
from pycutlass.test.gemm_testbed import test_all_gemm
from pycutlass.utils.device import device_cc
@unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.")
class GemmS8TensorOpF32Sm80(unittest.TestCase):
def test_SM80_Device_Gemm_s8t_s8n_s8t_tensor_op_s32_64x64x64_32x32x64(self):
math_inst = MathInstruction(
instruction_shape=[16, 8, 32],
element_a=cutlass.int8, element_b=cutlass.int8,
element_accumulator=cutlass.int32, opcode_class=cutlass.OpClass.TensorOp,
math_operation=MathOperation.multiply_add_saturate
)
tile_description = TileDescription(
threadblock_shape=[64, 64, 64],
stages=6, warp_count=[2, 2, 1],
math_instruction=math_inst
)
A = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajorInterleaved32,
alignment=16
)
B = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajorInterleaved32,
alignment=16
)
C = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajorInterleaved32,
alignment=8
)
epilogue_functor = FastLinearCombinationClamp(
C.element, C.alignment
)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
self.assertTrue(test_all_gemm(operation, "interleaved"))
def test_SM80_Device_Gemm_s8t_s8n_s8t_tensor_op_s32_256x128x128_64x64x128(self):
math_inst = MathInstruction(
instruction_shape=[16, 8, 32],
element_a=cutlass.int8, element_b=cutlass.int8,
element_accumulator=cutlass.int32, opcode_class=cutlass.OpClass.TensorOp,
math_operation=MathOperation.multiply_add
)
tile_description = TileDescription(
threadblock_shape=[128, 128, 128],
stages=3, warp_count=[2, 2, 1],
math_instruction=math_inst
)
A = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajor,
alignment=16
)
B = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajor,
alignment=16
)
C = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajor,
alignment=16
)
epilogue_functor = FastLinearCombinationClamp(
C.element, C.alignment
)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
self.assertTrue(test_all_gemm(operation, "multistage"))
def test_SM80_Device_Gemm_s8t_s8n_s8n_tensor_op_s32_128x128x128_64x64x128(self):
math_inst = MathInstruction(
instruction_shape=[16, 8, 32],
element_a=cutlass.int8, element_b=cutlass.int8,
element_accumulator=cutlass.int32, opcode_class=cutlass.OpClass.TensorOp,
math_operation=MathOperation.multiply_add
)
tile_description = TileDescription(
threadblock_shape=[128, 128, 128],
stages=3, warp_count=[2, 2, 1],
math_instruction=math_inst
)
A = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajor,
alignment=16
)
B = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajor,
alignment=16
)
C = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajor,
alignment=16
)
epilogue_functor = FastLinearCombinationClamp(
C.element, C.alignment
)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
self.assertTrue(test_all_gemm(operation, "multistage"))
def test_SM80_Device_Gemm_s8t_s8n_s32n_tensor_op_s32_128x128x128_64x64x128(self):
math_inst = MathInstruction(
instruction_shape=[16, 8, 32],
element_a=cutlass.int8, element_b=cutlass.int8,
element_accumulator=cutlass.int32, opcode_class=cutlass.OpClass.TensorOp,
math_operation=MathOperation.multiply_add
)
tile_description = TileDescription(
threadblock_shape=[128, 128, 128],
stages=3, warp_count=[2, 2, 1],
math_instruction=math_inst
)
A = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajor,
alignment=16
)
B = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajor,
alignment=16
)
C = TensorDescription(
element=cutlass.int32, layout=cutlass.ColumnMajor,
alignment=4
)
element_epilogue = cutlass.int32
epilogue_functor = LinearCombinationClamp(
C.element, C.alignment, math_inst.element_accumulator,
element_epilogue
)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
self.assertTrue(test_all_gemm(operation, "multistage"))
def test_SM80_Device_Gemm_s8t_s8n_s32t_tensor_op_s32_128x128x128_64x64x128(self):
math_inst = MathInstruction(
instruction_shape=[16, 8, 32],
element_a=cutlass.int8, element_b=cutlass.int8,
element_accumulator=cutlass.int32, opcode_class=cutlass.OpClass.TensorOp,
math_operation=MathOperation.multiply_add
)
tile_description = TileDescription(
threadblock_shape=[128, 128, 128],
stages=3, warp_count=[2, 2, 1],
math_instruction=math_inst
)
A = TensorDescription(
element=cutlass.int8, layout=cutlass.RowMajor,
alignment=16
)
B = TensorDescription(
element=cutlass.int8, layout=cutlass.ColumnMajor,
alignment=16
)
C = TensorDescription(
element=cutlass.int32, layout=cutlass.RowMajor,
alignment=4
)
element_epilogue = cutlass.int32
epilogue_functor = LinearCombinationClamp(
C.element, C.alignment, math_inst.element_accumulator,
element_epilogue
)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
self.assertTrue(test_all_gemm(operation, "multistage"))
if __name__ == '__main__':
pycutlass.get_memory_pool(2**30, 2**30)
unittest.main()