cutlass/include/cutlass/gemm/kernel/gemm_grouped_softmax_mainloop_fusion.h
ANIKET SHIVAM 66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00

511 lines
15 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Problem visitor for grouped GEMMs with a softmax fused beforehand
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/complex.h"
#include "cutlass/semaphore.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/trace.h"
#include "cutlass/gemm/kernel/gemm_transpose_operands.h"
#include "cutlass/gemm/kernel/gemm_grouped_problem_visitor.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
typename Epilogue_, ///! Epilogue
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
GroupScheduleMode GroupScheduleMode_, ///! Type of scheduling to perform
bool Transposed = false
>
struct GemmGroupedSoftmaxMainloopFusion {
public:
using Mma = Mma_;
using Epilogue = Epilogue_;
using EpilogueOutputOp = typename Epilogue::OutputOp;
using ThreadblockSwizzle = ThreadblockSwizzle_;
static GroupScheduleMode const kGroupScheduleMode = GroupScheduleMode_;
static bool const kTransposed = Transposed;
// Optional transpose
using MapArguments = kernel::detail::MapArguments<
typename Mma::IteratorA::Element,
typename Mma::IteratorA::Layout,
Mma::kTransformA,
Mma::IteratorA::AccessType::kElements,
typename Mma::IteratorB::Element,
typename Mma::IteratorB::Layout,
Mma::kTransformB,
Mma::IteratorB::AccessType::kElements,
typename Mma::LayoutC,
kTransposed
>;
// Public-facing type definitions related to operand element type, layout, and complex conjugate
// operation. Must interact with the 'kTransposed' notion.
using ElementA = typename MapArguments::ElementA;
using LayoutA = typename MapArguments::LayoutA;
using ElementB = typename MapArguments::ElementB;
using LayoutB = typename MapArguments::LayoutB;
using ElementC = typename Epilogue::OutputTileIterator::Element;
using LayoutC = typename MapArguments::LayoutC;
using ElementScaleBias = typename Mma::IteratorNormSum::Element;
static ComplexTransform const kTransformA = MapArguments::kTransformA;
static ComplexTransform const kTransformB = MapArguments::kTransformB;
// Type definitions about the mainloop.
using Operator = typename Mma::Operator;
using OperatorClass = typename Mma::Operator::OperatorClass;
using ThreadblockShape = typename Mma::Shape;
using WarpShape = typename Mma::Operator::Shape;
using InstructionShape = typename Mma::Policy::Operator::InstructionShape;
using ArchTag = typename Mma::ArchTag;
static int const kStages = Mma::kStages;
static int const kAlignmentA = MapArguments::kAlignmentA;
static int const kAlignmentB = MapArguments::kAlignmentB;
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
/// Warp count (concept: GemmShape)
using WarpCount = typename Mma::WarpCount;
static int const kThreadCount = 32 * WarpCount::kCount;
using ProblemVisitor = GemmGroupedProblemVisitor<
ThreadblockShape,
kGroupScheduleMode,
kThreadCount,
kThreadCount,
kTransposed>;
//
// Structures
//
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord *problem_sizes;
int problem_count;
int threadblock_count;
typename EpilogueOutputOp::Params output_op;
ElementA ** ptr_A;
ElementB ** ptr_B;
ElementC ** ptr_C;
ElementC ** ptr_D;
void ** ptr_norm;
void ** ptr_sum;
typename LayoutA::Stride::LongIndex *lda;
typename LayoutB::Stride::LongIndex *ldb;
typename LayoutC::Stride::LongIndex *ldc;
typename LayoutC::Stride::LongIndex *ldd;
// Only used by device-level operator
GemmCoord *host_problem_sizes;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments():
problem_count(0),
threadblock_count(0),
ptr_A(nullptr),
ptr_B(nullptr),
ptr_C(nullptr),
ptr_D(nullptr),
ptr_norm(nullptr),
ptr_sum(nullptr),
lda(nullptr),
ldb(nullptr),
ldc(nullptr),
ldd(nullptr),
host_problem_sizes(nullptr)
{
}
/// Ctor
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord *problem_sizes,
int problem_count,
int threadblock_count,
typename EpilogueOutputOp::Params output_op,
ElementA ** ptr_A,
ElementB ** ptr_B,
ElementC ** ptr_C,
ElementC ** ptr_D,
void ** ptr_norm,
void ** ptr_sum,
typename LayoutA::Stride::LongIndex *lda,
typename LayoutB::Stride::LongIndex *ldb,
typename LayoutC::Stride::LongIndex *ldc,
typename LayoutC::Stride::LongIndex *ldd,
GemmCoord *host_problem_sizes=nullptr
):
problem_sizes(problem_sizes),
problem_count(problem_count),
threadblock_count(threadblock_count),
output_op(output_op),
ptr_A(ptr_A),
ptr_B(ptr_B),
ptr_C(ptr_C),
ptr_D(ptr_D),
ptr_norm(ptr_norm),
ptr_sum(ptr_sum),
lda(lda),
ldb(ldb),
ldc(ldc),
ldd(ldd),
host_problem_sizes(host_problem_sizes)
{
}
};
//
// Structure for precomputing values in host memory and passing to kernels
//
/// Parameters structure
struct Params {
typename ProblemVisitor::Params problem_visitor;
int threadblock_count;
typename EpilogueOutputOp::Params output_op;
ElementA ** ptr_A;
ElementB ** ptr_B;
ElementC ** ptr_C;
ElementC ** ptr_D;
void ** ptr_norm;
void ** ptr_sum;
typename LayoutA::Stride::LongIndex *lda;
typename LayoutB::Stride::LongIndex *ldb;
typename LayoutC::Stride::LongIndex *ldc;
typename LayoutC::Stride::LongIndex *ldd;
//
// Methods
//
CUTLASS_HOST_DEVICE
Params():
ptr_A(nullptr),
ptr_B(nullptr),
ptr_C(nullptr),
ptr_D(nullptr),
ptr_norm(nullptr),
ptr_sum(nullptr),
lda(nullptr),
ldb(nullptr),
ldc(nullptr),
ldd(nullptr)
{ }
CUTLASS_HOST_DEVICE
Params(Arguments const &args,
void *workspace = nullptr,
int tile_count = 0):
problem_visitor(args.problem_sizes, args.problem_count, workspace, tile_count),
threadblock_count(args.threadblock_count),
output_op(args.output_op),
ptr_A(args.ptr_A),
ptr_B(args.ptr_B),
ptr_C(args.ptr_C),
ptr_D(args.ptr_D),
ptr_norm(args.ptr_norm),
ptr_sum(args.ptr_sum),
lda(args.lda),
ldb(args.ldb),
ldc(args.ldc),
ldd(args.ldd)
{
}
CUTLASS_HOST_DEVICE
void update(
Arguments const &args,
void *workspace = nullptr,
int tile_count = 0) {
problem_visitor = typename ProblemVisitor::Params(args.problem_sizes, args.problem_count,
workspace, tile_count);
threadblock_count = args.threadblock_count;
output_op = args.output_op;
ptr_A = args.ptr_A;
ptr_B = args.ptr_B;
ptr_C = args.ptr_C;
ptr_D = args.ptr_D;
ptr_norm = args.ptr_norm;
ptr_sum = args.ptr_sum;
lda = args.lda;
ldb = args.ldb;
ldc = args.ldc;
ldd = args.ldd;
}
};
/// Shared memory storage structure
struct SharedStorage {
union {
typename Mma::SharedStorage main_loop;
typename Epilogue::SharedStorage epilogue;
} kernel;
// ProblemVisitor shared storage can't be overlapped with others
typename ProblemVisitor::SharedStorage problem_visitor;
};
public:
//
// Methods
//
CUTLASS_DEVICE
GemmGroupedSoftmaxMainloopFusion() { }
/// Determines whether kernel satisfies alignment
static Status can_implement(cutlass::gemm::GemmCoord const & problem_size) {
return Status::kSuccess;
}
static Status can_implement(Arguments const &args) {
return Status::kSuccess;
}
/// Executes one GEMM
CUTLASS_DEVICE
void operator()(Params const &params, SharedStorage &shared_storage) {
//
// These types shadow the type-level definitions and support the ability to implement
// a 'transposed' GEMM that computes the transposed problems.
//
using ElementA = typename Mma::IteratorA::Element;
using LayoutA = typename Mma::IteratorA::Layout;
using ElementB = typename Mma::IteratorB::Element;
using LayoutB = typename Mma::IteratorB::Layout;
using ElementC = typename Epilogue::OutputTileIterator::Element;
using LayoutC = typename Epilogue::OutputTileIterator::Layout;
//
// Problem visitor.
//
ProblemVisitor problem_visitor(
params.problem_visitor,
shared_storage.problem_visitor,
blockIdx.x);
// Outer 'persistent' loop to iterate over tiles
while (problem_visitor.next_tile()) {
GemmCoord problem_size = problem_visitor.problem_size();
int32_t problem_idx = problem_visitor.problem_index();
int32_t threadblock_idx = int32_t(problem_visitor.threadblock_idx());
GemmCoord grid_shape = problem_visitor.grid_shape(problem_size);
cutlass::gemm::GemmCoord threadblock_offset(
int(threadblock_idx / grid_shape.n()) * Mma::Shape::kM,
int(threadblock_idx % grid_shape.n()) * Mma::Shape::kN,
0);
// Load element pointers. Exchange pointers and strides if working on the transpose
ElementA *ptr_A = reinterpret_cast<ElementA *>((kTransposed ? params.ptr_B[problem_idx] : params.ptr_A[problem_idx]));
typename LayoutA::LongIndex ldm_A = (kTransposed ? params.ldb[problem_idx] : params.lda[problem_idx]);
ElementB *ptr_B = reinterpret_cast<ElementB *>((kTransposed ? params.ptr_A[problem_idx] : params.ptr_B[problem_idx]));
typename LayoutB::LongIndex ldm_B = (kTransposed ? params.lda[problem_idx] : params.ldb[problem_idx]);
// Compute initial location in logical coordinates
cutlass::MatrixCoord tb_offset_A{
threadblock_offset.m(),
0,
};
cutlass::MatrixCoord tb_offset_B{
0,
threadblock_offset.n()
};
// Compute position within threadblock
int thread_idx = threadIdx.x;
// Construct iterators to A and B operands
typename Mma::IteratorA iterator_A(
LayoutA(ldm_A),
ptr_A,
{problem_size.m(), problem_size.k()},
thread_idx,
tb_offset_A);
typename Mma::IteratorB iterator_B(
LayoutB(ldm_B),
ptr_B,
{problem_size.k(), problem_size.n()},
thread_idx,
tb_offset_B);
// Construct iterator to the softmax norm/sum vector
typename Mma::IteratorNormSum iterator_norm_sum(
problem_size.m(),
static_cast<ElementScaleBias const *>(params.ptr_norm[problem_idx]),
static_cast<ElementScaleBias const *>(params.ptr_sum[problem_idx]),
thread_idx,
MatrixCoord(0, threadblock_offset.m())
);
typename Mma::FragmentC accumulators;
accumulators.clear();
// Broadcast the warp_id computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;
//
// Matrix multiply phase
//
// Construct thread-scoped matrix multiply
Mma mma(shared_storage.kernel.main_loop, thread_idx, warp_idx, lane_idx);
// Compute threadblock-scoped matrix multiply-add
int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK;
// Wait for all threads to finish their epilogue phases from the previous tile.
__syncthreads();
// Compute threadblock-scoped matrix multiply-add
mma(
gemm_k_iterations,
accumulators,
iterator_A,
iterator_B,
iterator_norm_sum,
accumulators);
//
// Epilogue
//
EpilogueOutputOp output_op(params.output_op);
ElementC *ptr_C = params.ptr_C[problem_idx];
ElementC *ptr_D = params.ptr_D[problem_idx];
LayoutC layout_C(params.ldc[problem_idx]);
LayoutC layout_D(params.ldd[problem_idx]);
typename Epilogue::OutputTileIterator::Params params_C(layout_C);
typename Epilogue::OutputTileIterator::Params params_D(layout_D);
// Tile iterator loading from source tensor.
typename Epilogue::OutputTileIterator iterator_C(
params_C,
ptr_C,
problem_size.mn(),
thread_idx,
threadblock_offset.mn()
);
// Tile iterator writing to destination tensor.
typename Epilogue::OutputTileIterator iterator_D(
params_D,
ptr_D,
problem_size.mn(),
thread_idx,
threadblock_offset.mn()
);
Epilogue epilogue(
shared_storage.kernel.epilogue,
thread_idx,
warp_idx,
lane_idx);
// Execute the epilogue operator to update the destination tensor.
epilogue(
output_op,
iterator_D,
accumulators,
iterator_C);
// Next tile
problem_visitor.advance(gridDim.x);
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////