cutlass/examples/57_hopper_grouped_gemm/57_hopper_grouped_gemm.cu
Pradeep Ramani 8236f30675
CUTLASS 3.4.0 (#1286)
* CUTLASS 3.4.0

* Update CHANGELOG.md

---------

Co-authored-by: Pradeep Ramani <prramani@nvidia.com>
2023-12-29 15:21:31 -05:00

678 lines
23 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Hopper Grouped GEMM example using CUTLASS 3 APIs for NVIDIA Hopper architecture.
This example demonstrates an implementation of Grouped GEMM using a TMA + GMMA
warp-specialized cooperative kernel.
For this example all scheduling work is performed on the device.
The new feature showcased in this example is on-the-fly modification of TMA descriptors
to move between groups/problem_count (represented by groups).
To run this example:
$ ./examples/57_hopper_grouped_gemm/57_hopper_grouped_gemm --m=2048 --n=2048 --k=2048 --groups=10
The above example command makes all 10 groups to be sized at the given m, n, k sizes.
Skipping any of the problem dimensions randomizes it across the different groups.
To run this example for a set of problems using the benchmark option:
$ ./examples/57_hopper_grouped_gemm/57_hopper_grouped_gemm --benchmark=./test_benchmark.txt
Where the test_benchmark.txt may look as such:
0 256x512x128
1 256x512x512
2 512x256x128
3 256x256x128
4 256x512x1024
5 1024x512x128 and so on
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "helper.h"
using namespace cute;
using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int,int,int>>; // <M,N,K> per group
using ElementA = cutlass::float_e4m3_t; // Element type for A matrix operand
using ElementB = cutlass::float_e5m2_t; // Element type for B matrix operand
using ElementC = float; // Element type for C and D matrix operands
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM kernel configurations
/////////////////////////////////////////////////////////////////////////////////////////////////
// A matrix configuration
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
// B matrix configuration
using LayoutB = cutlass::layout::ColumnMajor; // Layout type for B matrix operand
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; // Memory access granularity/alignment of B matrix in units of elements (up to 16 bytes)
// C/D matrix configuration
using LayoutC = cutlass::layout::ColumnMajor; // Layout type for C and D matrix operands
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // Memory access granularity/alignment of C matrix in units of elements (up to 16 bytes)
// Core kernel configurations
using ElementAccumulator = float; // Element type for internal accumulation
using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that supports the intended feature
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
using TileShape = Shape<_256,_128,_64>; // Threadblock-level tile size
using ClusterShape = Shape<_1,_2,_1>; // Shape of the threadblocks in a cluster
using StageCountType = cutlass::gemm::collective::StageCountAuto; // Stage count maximized based on the tile size
using KernelSchedule = cutlass::gemm::KernelGroupTmaWarpSpecializedCooperativeFP8FastAccum; // Kernel to launch
using EpilogueSchedule = cutlass::epilogue::NoSmemWarpSpecializedGroup; // Epilogue to launch
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShape, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementAccumulator,
ElementC, LayoutC, AlignmentC,
ElementC, LayoutC, AlignmentC,
EpilogueSchedule
>::CollectiveOp;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass,
ElementA, LayoutA, AlignmentA,
ElementB, LayoutB, AlignmentB,
ElementAccumulator,
TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule
>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
ProblemShape,
CollectiveMainloop,
CollectiveEpilogue
>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
// Reference device GEMM implementation type
using DeviceGemmReference = cutlass::reference::device::Gemm<
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
ElementAccumulator>;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
// Host-side allocations
std::vector<int64_t> offset_A;
std::vector<int64_t> offset_B;
std::vector<int64_t> offset_C;
std::vector<int64_t> offset_D;
std::vector<StrideA> stride_A_host;
std::vector<StrideB> stride_B_host;
std::vector<StrideC> stride_C_host;
std::vector<StrideD> stride_D_host;
// Device-side allocations
cutlass::DeviceAllocation<typename ProblemShape::UnderlyingProblemShape> problem_sizes;
cutlass::DeviceAllocation<typename Gemm::ElementA> block_A;
cutlass::DeviceAllocation<typename Gemm::ElementB> block_B;
cutlass::DeviceAllocation<typename Gemm::ElementC> block_C;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput> block_D;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput> block_ref_D;
cutlass::DeviceAllocation<const typename Gemm::ElementA *> ptr_A;
cutlass::DeviceAllocation<const typename Gemm::ElementB *> ptr_B;
cutlass::DeviceAllocation<const typename Gemm::ElementC *> ptr_C;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput *> ptr_D;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput *> ptr_ref_D;
cutlass::DeviceAllocation<StrideA> stride_A;
cutlass::DeviceAllocation<StrideB> stride_B;
cutlass::DeviceAllocation<StrideC> stride_C;
cutlass::DeviceAllocation<StrideD> stride_D;
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Testbed utility types
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help = false;
float alpha = 1.0f;
float beta = 0.0f;
int iterations = 10;
int m = 1024, n = 2048, k = 512, groups = 10;
std::string benchmark_path;
std::vector<typename ProblemShape::UnderlyingProblemShape> problem_sizes_host;
int const tma_alignment_bits = 128;
int const alignment = tma_alignment_bits / cutlass::sizeof_bits<ElementA>::value;
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("m", m);
cmd.get_cmd_line_argument("n", n);
cmd.get_cmd_line_argument("k", k);
cmd.get_cmd_line_argument("groups", groups);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("iterations", iterations);
cmd.get_cmd_line_argument("benchmark", benchmark_path);
// Decide how to initialize the problems
if (!benchmark_path.empty()) {
if (!benchmark_problems()) {
problem_sizes_host.clear();
return;
}
}
else {
randomize_problems(cmd);
}
}
void randomize_problems(cutlass::CommandLine &cmd) {
int cmd_line_m = -1;
int cmd_line_n = -1;
int cmd_line_k = -1;
cmd.get_cmd_line_argument("m", cmd_line_m);
cmd.get_cmd_line_argument("n", cmd_line_n);
cmd.get_cmd_line_argument("k", cmd_line_k);
problem_sizes_host.reserve(groups);
for (int i = groups; i > 0; i--) {
int m = cmd_line_m;
int n = cmd_line_n;
int k = cmd_line_k;
if (m < 1) {
m = ((rand() % 512) + 1);
}
if (n < 1) {
n = ((rand() % 512) + 1);
}
if (k < 1) {
k = alignment * ((rand() % 64) + 1);
}
problem_sizes_host.push_back({m, n, k});
}
}
/// Load a benchmark
bool benchmark_problems() {
std::ifstream file(benchmark_path);
if (!file.good()) {
return false;
}
while (file.good()) {
int idx = -1;
std::string extent_str;
file >> idx >> extent_str;
if (idx < 0 || extent_str.empty()) {
break;
}
cutlass::gemm::GemmCoord extent;
std::vector<std::string> tokens;
cutlass::CommandLine::tokenize(tokens, extent_str, 'x');
for (int i = 0; i < int(tokens.size()); ++i) {
int x = std::atoi(tokens.at(i).c_str());
// round up
if (x % alignment) {
x += (alignment - (x % alignment));
}
extent.at(i) = x;
}
if (extent.product()) {
problem_sizes_host.push_back({extent.m(), extent.n(), extent.k()});
}
}
return true;
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "57_hopper_grouped_gemm\n\n"
<< " Hopper FP8 Grouped GEMM using a Warp Specialized kernel.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM for all groups\n"
<< " --n=<int> Sets the N extent of the GEMM for all groups\n"
<< " --k=<int> Sets the K extent of the GEMM for all groups\n"
<< " --groups=<int> Sets the number of individual GEMM problems for Grouped GEMM\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Number of profiling iterations to perform\n\n"
<< " --benchmark=<str> Executes a benchmark problem size.\n";
out
<< "\n\nExamples:\n\n"
<< "$ " << "57_hopper_grouped_gemm" << " --m=1024 --n=512 --k=1024 --groups=10 --alpha=2 --beta=0.707 \n\n";
return out;
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s, std::vector<typename ProblemShape::UnderlyingProblemShape> problem_sizes_host) const
{
// Number of real-valued multiply-adds
uint64_t fmas = uint64_t();
for (auto const & problem : problem_sizes_host) {
fmas += cute::size(problem);
}
// Two flops per multiply-add
uint64_t flop = uint64_t(2) * uint64_t(fmas);
double gflop = double(flop) / double(1.0e9);
return gflop / runtime_s;
}
};
/// Result structure
struct Result
{
double avg_runtime_ms = 0.0;
double gflops = 0.0;
cutlass::Status status = cutlass::Status::kSuccess;
cudaError_t error = cudaSuccess;
bool passed = false;
};
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM setup and evaluation
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to initialize a block of device data
template <class Element>
bool initialize_block(
cutlass::DeviceAllocation<Element>& block,
uint64_t seed=2023) {
Element scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = static_cast<Element>(2);
scope_min = static_cast<Element>(0);
} else if (bits_input <= 8) {
scope_max = static_cast<Element>(2);
scope_min = static_cast<Element>(-2);
} else {
scope_max = static_cast<Element>(8);
scope_min = static_cast<Element>(-8);
}
cutlass::reference::device::BlockFillRandomUniform(
block.get(), block.size(), seed, scope_max, scope_min, 0);
return true;
}
/// Allocates device-side data
void allocate(const Options &options) {
int64_t total_elements_A = 0;
int64_t total_elements_B = 0;
int64_t total_elements_C = 0;
int64_t total_elements_D = 0;
for (int32_t i = 0; i < options.groups; ++i) {
auto problem = options.problem_sizes_host.at(i);
auto M = get<0>(problem);
auto N = get<1>(problem);
auto K = get<2>(problem);
offset_A.push_back(total_elements_A);
offset_B.push_back(total_elements_B);
offset_C.push_back(total_elements_C);
offset_D.push_back(total_elements_D);
int64_t elements_A = M * K;
int64_t elements_B = K * N;
int64_t elements_C = M * N;
int64_t elements_D = M * N;
total_elements_A += elements_A;
total_elements_B += elements_B;
total_elements_C += elements_C;
total_elements_D += elements_D;
stride_A_host.push_back(cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, Int<1>{})));
stride_B_host.push_back(cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, Int<1>{})));
stride_C_host.push_back(cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, Int<1>{})));
stride_D_host.push_back(cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, Int<1>{})));
}
block_A.reset(total_elements_A);
block_B.reset(total_elements_B);
block_C.reset(total_elements_C);
block_D.reset(total_elements_D);
block_ref_D.reset(total_elements_D);
}
/// Initialize operands to be used in the GEMM and reference GEMM
void initialize(const Options &options) {
uint64_t seed = 2020;
problem_sizes.reset(options.groups);
problem_sizes.copy_from_host(options.problem_sizes_host.data());
//
// Assign pointers
//
std::vector<ElementA *> ptr_A_host(options.groups);
std::vector<ElementB *> ptr_B_host(options.groups);
std::vector<ElementC *> ptr_C_host(options.groups);
std::vector<ElementC *> ptr_D_host(options.groups);
for (int32_t i = 0; i < options.groups; ++i) {
ptr_A_host.at(i) = block_A.get() + offset_A.at(i);
ptr_B_host.at(i) = block_B.get() + offset_B.at(i);
ptr_C_host.at(i) = block_C.get() + offset_C.at(i);
ptr_D_host.at(i) = block_D.get() + offset_D.at(i);
}
ptr_A.reset(options.groups);
ptr_A.copy_from_host(ptr_A_host.data());
ptr_B.reset(options.groups);
ptr_B.copy_from_host(ptr_B_host.data());
ptr_C.reset(options.groups);
ptr_C.copy_from_host(ptr_C_host.data());
ptr_D.reset(options.groups);
ptr_D.copy_from_host(ptr_D_host.data());
stride_A.reset(options.groups);
stride_A.copy_from_host(stride_A_host.data());
stride_B.reset(options.groups);
stride_B.copy_from_host(stride_B_host.data());
stride_C.reset(options.groups);
stride_C.copy_from_host(stride_C_host.data());
stride_D.reset(options.groups);
stride_D.copy_from_host(stride_D_host.data());
initialize_block(block_A, seed + 2023);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2021);
}
/// Populates a Gemm::Arguments structure from the given commandline options
typename Gemm::Arguments args_from_options(const Options &options)
{
cutlass::KernelHardwareInfo hw_info;
// Change device_id to another value if you are running on a machine with multiple GPUs and wish
// to use a GPU other than that with device ID 0.
hw_info.device_id = 0;
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGrouped,
{options.groups, problem_sizes.get(), options.problem_sizes_host.data()},
{ptr_A.get(), stride_A.get(), ptr_B.get(), stride_B.get()},
{{options.alpha, options.beta}, ptr_C.get(), stride_C.get(), ptr_D.get(), stride_D.get()},
hw_info
};
return arguments;
}
bool verify(const Options &options) {
bool passed = true;
for (int32_t i = 0; i < options.groups; ++i) {
auto problem = options.problem_sizes_host.at(i);
auto M = get<0>(problem);
auto N = get<1>(problem);
auto K = get<2>(problem);
cutlass::TensorRef ref_A(block_A.get() + offset_A.at(i), Gemm::LayoutA::packed({M, K}));
cutlass::TensorRef ref_B(block_B.get() + offset_B.at(i), Gemm::LayoutB::packed({K, N}));
cutlass::TensorRef ref_C(block_C.get() + offset_C.at(i), Gemm::LayoutC::packed({M, N}));
cutlass::TensorRef ref_D(block_ref_D.get() + offset_D.at(i), Gemm::LayoutD::packed({M, N}));
//
// Compute reference output
//
// Create instantiation for device reference gemm kernel
DeviceGemmReference gemm_reference;
// Launch device reference gemm kernel
gemm_reference(
{M, N, K},
ElementAccumulator(options.alpha),
ref_A,
ref_B,
ElementAccumulator(options.beta),
ref_C,
ref_D);
// Wait for kernel to finish
CUDA_CHECK(cudaDeviceSynchronize());
// Check if output from CUTLASS kernel and reference kernel are equal or not
passed &= cutlass::reference::device::BlockCompareEqual(block_ref_D.get() + offset_D.at(i), block_D.get() + offset_D.at(i), M * N);
#if 0
std::cout << "Group: " << i << " Status: " << passed << std::endl;
#endif
}
return passed;
}
/// Execute a given example GEMM computation
template <typename Gemm>
int run(Options &options)
{
allocate(options);
initialize(options);
// Instantiate CUTLASS kernel depending on templates
Gemm gemm;
// Create a structure of gemm kernel arguments suitable for invoking an instance of Gemm
auto arguments = args_from_options(options);
// Using the arguments, query for extra workspace required for matrix multiplication computation
size_t workspace_size = Gemm::get_workspace_size(arguments);
// Allocate workspace memory
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
// Check if the problem size is supported or not
CUTLASS_CHECK(gemm.can_implement(arguments));
// Initialize CUTLASS kernel with arguments and workspace pointer
CUTLASS_CHECK(gemm.initialize(arguments, workspace.get()));
// Correctness / Warmup iteration
CUTLASS_CHECK(gemm.run());
// Check if output from CUTLASS kernel and reference kernel are equal or not
Result result;
result.passed = verify(options);
std::cout << " Disposition: " << (result.passed ? "Passed" : "Failed") << std::endl;
if (!result.passed) {
exit(-1);
}
// Run profiling loop
if (options.iterations > 0)
{
GpuTimer timer;
timer.start();
for (int iter = 0; iter < options.iterations; ++iter) {
CUTLASS_CHECK(gemm.initialize(arguments, workspace.get()));
CUTLASS_CHECK(gemm.run());
}
timer.stop();
// Compute average setup and runtime and GFLOPs.
float elapsed_ms = timer.elapsed_millis();
result.avg_runtime_ms = double(elapsed_ms) / double(options.iterations);
result.gflops = options.gflops(result.avg_runtime_ms / 1000.0, options.problem_sizes_host);
std::cout << " Problem Sizes: " << std::endl;
for (auto const & problem : options.problem_sizes_host) {
std::cout << " " << problem << std::endl;
}
std::cout << " Groups : " << options.groups << std::endl;
std::cout << " Alpha, Beta : " << options.alpha << ',' << options.beta << std::endl;
std::cout << " Avg runtime : " << result.avg_runtime_ms << " ms" << std::endl;
std::cout << " GFLOPS : " << result.gflops << std::endl;
}
return 0;
}
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
// CUTLASS must be compiled with CUDA 12.3 Toolkit to run this example
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 3)) {
std::cerr << "This example requires CUDA 12.3 or newer.\n";
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
cudaDeviceProp props;
int current_device_id;
CUDA_CHECK(cudaGetDevice(&current_device_id));
CUDA_CHECK(cudaGetDeviceProperties(&props, current_device_id));
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (props.major < 9) {
std::cerr
<< "This example requires a GPU of NVIDIA's Hopper Architecture or "
<< "later (compute capability 90 or greater).\n";
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
//
// Evaluate CUTLASS kernels
//
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
run<Gemm>(options);
#endif
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////