667 lines
21 KiB
Plaintext
667 lines
21 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/gemm/device/gemm.h"
|
|
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
|
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
|
|
|
#include "cutlass/util/command_line.h"
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/util/reference/device/gemm.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/convolution.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
|
|
#include "helper.h"
|
|
|
|
// The code section below describes datatype for input, output tensors and computation between
|
|
// elements
|
|
using Element = cutlass::Quaternion<float>;
|
|
using ElementAccumulator = Element; // Data type of accumulator
|
|
using ElementComputeEpilogue = Element; // Data type of epilogue computation (alpha, beta)
|
|
using ElementInputA = Element; // Data type of elements in input tensor
|
|
using ElementInputB = Element; // Data type of elements in input tensor
|
|
using ElementOutput = Element; // Data type of elements in output tensor
|
|
|
|
using LayoutInputA = cutlass::layout::TensorNHWC;
|
|
using LayoutInputB = cutlass::layout::TensorNHWC;
|
|
using LayoutOutput = cutlass::layout::TensorNHWC;
|
|
|
|
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
|
using MMAOp = cutlass::arch::OpClassSimt;
|
|
|
|
// This code section describes CUDA SM architecture number
|
|
using SmArch = cutlass::arch::Sm50;
|
|
|
|
// This code section describes the tile size a thread block will compute
|
|
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 8>; // Threadblock tile shape
|
|
|
|
// This code section describes tile size a warp will compute
|
|
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; // Warp tile shape
|
|
|
|
// This code section describes the size of MMA op
|
|
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>; // SIMT instruction shape
|
|
|
|
// This code section describes how threadblocks are scheduled on GPU
|
|
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
|
|
|
|
// Number of pipelines you want to use
|
|
constexpr int NumStages = 2;
|
|
|
|
// This code section describe iterator algorithm selected is Analytic or Optimized
|
|
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized;
|
|
|
|
// This code section describes the epilogue part of the kernel, we use default value
|
|
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
|
ElementOutput, // Data type of output matrix.
|
|
128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized.
|
|
// memory access. This becomes the vector width of
|
|
// math instructions in the epilogue too.
|
|
ElementAccumulator, // Data type of accumulator
|
|
ElementComputeEpilogue>; // Data type for alpha/beta in linear combination
|
|
|
|
|
|
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
|
ElementInputA, LayoutInputA,
|
|
ElementInputB, LayoutInputB,
|
|
ElementOutput, LayoutOutput,
|
|
ElementAccumulator,
|
|
MMAOp,
|
|
SmArch,
|
|
ThreadblockShape,
|
|
WarpShape,
|
|
InstructionShape,
|
|
EpilogueOp,
|
|
SwizzleThreadBlock,
|
|
NumStages,
|
|
cutlass::arch::OpMultiplyAdd,
|
|
IteratorAlgorithm
|
|
>::Kernel;
|
|
|
|
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Command line options parsing
|
|
struct Options {
|
|
|
|
bool help;
|
|
cutlass::Tensor4DCoord input_size;
|
|
cutlass::Tensor4DCoord filter_size;
|
|
cutlass::Tensor4DCoord padding;
|
|
cutlass::MatrixCoord conv_stride;
|
|
cutlass::MatrixCoord dilation;
|
|
bool reference_check;
|
|
bool measure_performance;
|
|
int iterations;
|
|
bool save_workspace;
|
|
ElementComputeEpilogue alpha;
|
|
ElementComputeEpilogue beta;
|
|
bool benchmark;
|
|
std::string tag;
|
|
|
|
Options():
|
|
help(false),
|
|
input_size(1, 32, 32, 32),
|
|
filter_size(32, 3, 3, 32),
|
|
padding(1, 1, 1, 1),
|
|
conv_stride(1, 1),
|
|
dilation(1, 1),
|
|
reference_check(false),
|
|
measure_performance(true),
|
|
iterations(20),
|
|
save_workspace(false),
|
|
alpha(1),
|
|
beta(0),
|
|
benchmark(false) { }
|
|
|
|
// Verify the problem size is compatible with the CUTLASS Convolution implementation.
|
|
bool valid() {
|
|
|
|
//
|
|
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
|
|
// all pointers, strides, and tensor extents must be divisible by 8 elements.
|
|
//
|
|
int const kAlignment = 8;
|
|
|
|
if ((input_size.c() % kAlignment) ||
|
|
(filter_size.n() % kAlignment)) {
|
|
|
|
// misaligned tensors
|
|
return false;
|
|
}
|
|
|
|
// Invalid padding
|
|
if ((padding.h() != filter_size.h() / 2) ||
|
|
(padding.w() != filter_size.w() / 2)) {
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Updates input and filter sizes
|
|
void update(
|
|
cutlass::Tensor4DCoord input_size,
|
|
cutlass::Tensor4DCoord filter_size) {
|
|
|
|
this->input_size = input_size;
|
|
this->filter_size = filter_size;
|
|
|
|
padding.n() = filter_size.h() / 2;
|
|
padding.h() = filter_size.h() / 2;
|
|
padding.w() = filter_size.w() / 2;
|
|
padding.c() = filter_size.w() / 2;
|
|
}
|
|
|
|
// Parses the command line
|
|
void parse(int argc, char const **args) {
|
|
cutlass::CommandLine cmd(argc, args);
|
|
|
|
if (cmd.check_cmd_line_flag("help")) {
|
|
help = true;
|
|
}
|
|
|
|
if (cmd.check_cmd_line_flag("ref-check")) {
|
|
reference_check = true;
|
|
}
|
|
|
|
if (cmd.check_cmd_line_flag("perf-check")) {
|
|
measure_performance = true;
|
|
}
|
|
|
|
if (cmd.check_cmd_line_flag("save-workspace")) {
|
|
save_workspace = true;
|
|
}
|
|
|
|
if (cmd.check_cmd_line_flag("benchmark")) {
|
|
benchmark = true;
|
|
}
|
|
|
|
cmd.get_cmd_line_argument("n", input_size.n());
|
|
cmd.get_cmd_line_argument("h", input_size.h());
|
|
cmd.get_cmd_line_argument("w", input_size.w());
|
|
cmd.get_cmd_line_argument("c", input_size.c());
|
|
|
|
cmd.get_cmd_line_argument("k", filter_size.n());
|
|
cmd.get_cmd_line_argument("r", filter_size.h());
|
|
cmd.get_cmd_line_argument("s", filter_size.w());
|
|
filter_size.c() = input_size.c();
|
|
|
|
cmd.get_cmd_line_argument("alpha_w", alpha.w());
|
|
cmd.get_cmd_line_argument("alpha_x", alpha.x());
|
|
cmd.get_cmd_line_argument("alpha_y", alpha.y());
|
|
cmd.get_cmd_line_argument("alpha_z", alpha.z());
|
|
|
|
cmd.get_cmd_line_argument("beta_w", beta.w());
|
|
cmd.get_cmd_line_argument("beta_x", beta.x());
|
|
cmd.get_cmd_line_argument("beta_y", beta.y());
|
|
cmd.get_cmd_line_argument("beta_z", beta.z());
|
|
|
|
cmd.get_cmd_line_argument("iterations", iterations);
|
|
cmd.get_cmd_line_argument("tag", tag);
|
|
|
|
if (filter_size.h() == 3 && filter_size.w() == 3) {
|
|
padding = {1, 1, 1, 1};
|
|
}
|
|
else {
|
|
filter_size.h() = 1;
|
|
filter_size.w() = 1;
|
|
padding = {0, 0, 0, 0};
|
|
}
|
|
}
|
|
|
|
/// Prints the usage statement.
|
|
std::ostream & print_usage(std::ostream &out) const {
|
|
|
|
out << "22_quaternion_conv example\n\n"
|
|
<< " This example uses Ampere's Tensor Core operators on F16 data types to compute\n"
|
|
<< " forward convolution on tensors of layout NHWC.\n\n"
|
|
<< "Options:\n\n"
|
|
<< " --help If specified, displays this usage statement.\n\n"
|
|
<< " --n=<int> Input tensor extent N\n"
|
|
<< " --h=<int> Input tensor extent H\n"
|
|
<< " --w=<int> Input tensor extent W\n"
|
|
<< " --c=<int> Input tensor extent C\n"
|
|
<< " --k=<int> Filter extent K\n"
|
|
<< " --r=<int> Filter extent R\n"
|
|
<< " --s=<int> Filter extent S\n\n"
|
|
<< " --alpha=<float> Epilogue scalar alpha\n"
|
|
<< " --beta=<float> Epilogue scalar beta\n\n"
|
|
<< " --ref-check If set (true), reference check on the host is computed\n"
|
|
<< " --perf-check If set (true), performance is measured.\n"
|
|
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
|
|
<< " --iterations=<int> Number of profiling iterations to perform.\n"
|
|
<< " --save-workspace If set, workspace is written to a text file.\n"
|
|
<< " --tag=<string> String to replicate across the first column in the results table\n";
|
|
|
|
out << "\n\nExamples:\n\n"
|
|
<< "$ ./examples/22_quaternion_conv/22_quaternion_conv --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"
|
|
<< "$ ./examples/22_quaternion_conv/22_quaternion_conv --n=1 --h=224 --w=224 --c=32 --k=32 --r=3 --s=3 --ref-check\n\n";
|
|
|
|
return out;
|
|
}
|
|
|
|
/// Computes the output tensor size (NPQK)
|
|
cutlass::Tensor4DCoord output_size() const {
|
|
return cutlass::Tensor4DCoord(
|
|
input_size.n(),
|
|
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
|
|
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
|
|
filter_size.n());
|
|
}
|
|
|
|
/// Compute performance in GFLOP/s
|
|
double gflops(double runtime_s) const {
|
|
|
|
// Number of multiply-adds = NPQK * CRS
|
|
int64_t fmas = output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c()) * 16;
|
|
|
|
// Two flops per multiply-add
|
|
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct Result {
|
|
double runtime_ms;
|
|
double gflops;
|
|
cutlass::Status status;
|
|
cutlass::Status reference_check;
|
|
cudaError_t error;
|
|
|
|
Result():
|
|
runtime_ms(0),
|
|
gflops(0),
|
|
status(cutlass::Status::kSuccess),
|
|
reference_check(cutlass::Status::kInvalid),
|
|
error(cudaSuccess) { }
|
|
|
|
static std::ostream & print_header(std::ostream &out, Options const &options) {
|
|
|
|
if (!options.tag.empty()) {
|
|
out << "Name,";
|
|
}
|
|
|
|
out << "Layer,N,H,W,C,K,R,S,Runtime,GFLOPs";
|
|
|
|
return out;
|
|
}
|
|
|
|
std::ostream & print(std::ostream &out, int idx, Options const &options) {
|
|
|
|
if (!options.tag.empty()) {
|
|
out << options.tag << ",";
|
|
}
|
|
|
|
out
|
|
<< "conv_" << idx << ","
|
|
<< options.input_size.n() << ","
|
|
<< options.input_size.h() << ","
|
|
<< options.input_size.w() << ","
|
|
<< options.input_size.c() << ","
|
|
<< options.filter_size.n() << ","
|
|
<< options.filter_size.h() << ","
|
|
<< options.filter_size.w() << ","
|
|
<< runtime_ms << ","
|
|
<< gflops;
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Runs one benchmark
|
|
Result profile_convolution(Options const &options) {
|
|
|
|
Result result;
|
|
|
|
//
|
|
// Allocate host-device tensors using the CUTLASS Utilities.
|
|
//
|
|
|
|
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
|
|
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
|
|
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
|
|
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_c(options.output_size());
|
|
|
|
//
|
|
// Initialize tensors
|
|
//
|
|
|
|
// Fill tensor A on host with uniform-distribution random data
|
|
cutlass::reference::host::TensorFillRandomUniform(
|
|
tensor_a.host_view(),
|
|
1,
|
|
7,
|
|
-8,
|
|
0);
|
|
|
|
// Fill tensor B on host with uniform-distribution random data
|
|
cutlass::reference::host::TensorFillRandomUniform(
|
|
tensor_b.host_view(),
|
|
1,
|
|
7,
|
|
-8,
|
|
0);
|
|
|
|
// Fill tensor C on host with zeros
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_c.host_view());
|
|
|
|
// Fill tensor C for reference on host with zeros
|
|
cutlass::reference::host::TensorFill(
|
|
tensor_ref_c.host_view());
|
|
|
|
// Copy data from host to GPU
|
|
tensor_a.sync_device();
|
|
tensor_b.sync_device();
|
|
tensor_c.sync_device();
|
|
tensor_ref_c.sync_device();
|
|
|
|
//
|
|
// Define arguments for CUTLASS Convolution
|
|
//
|
|
|
|
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
|
|
|
|
// Split K dimension into 1 partitions
|
|
int split_k_slices = 1;
|
|
|
|
// Construct Conv2dProblemSize with user defined output size
|
|
cutlass::conv::Conv2dProblemSize problem_size(
|
|
options.input_size,
|
|
options.filter_size,
|
|
options.padding,
|
|
options.conv_stride,
|
|
options.dilation,
|
|
options.output_size(),
|
|
mode,
|
|
split_k_slices
|
|
);
|
|
|
|
// Construct ImplicitGemm::Argument structure with conv2d
|
|
// problem size, data pointers, and epilogue values
|
|
typename ImplicitGemm::Arguments arguments{
|
|
problem_size,
|
|
tensor_a.device_ref(),
|
|
tensor_b.device_ref(),
|
|
tensor_c.device_ref(),
|
|
tensor_c.device_ref(),
|
|
{options.alpha, options.beta},
|
|
};
|
|
|
|
//
|
|
// Initialize CUTLASS Convolution
|
|
//
|
|
|
|
ImplicitGemm implicit_gemm_op;
|
|
|
|
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
|
|
|
|
// Allocate workspace memory
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
result.status = implicit_gemm_op.can_implement(arguments);
|
|
CUTLASS_CHECK(result.status);
|
|
|
|
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
|
|
CUTLASS_CHECK(result.status);
|
|
|
|
//
|
|
// Launch initialized CUTLASS kernel
|
|
//
|
|
result.status = implicit_gemm_op();
|
|
|
|
CUTLASS_CHECK(result.status);
|
|
|
|
//
|
|
// Optional reference check
|
|
//
|
|
|
|
if (options.reference_check) {
|
|
std::cout << "Verification on host...\n";
|
|
|
|
// Compute with reference implementation
|
|
cutlass::reference::host::Conv2dFprop<
|
|
ElementInputA,
|
|
LayoutInputA,
|
|
ElementInputB,
|
|
LayoutInputB,
|
|
ElementOutput,
|
|
LayoutOutput,
|
|
ElementComputeEpilogue,
|
|
ElementAccumulator
|
|
>(
|
|
problem_size,
|
|
tensor_a.host_ref(),
|
|
tensor_b.host_ref(),
|
|
tensor_c.host_ref(),
|
|
tensor_ref_c.host_ref(),
|
|
options.alpha,
|
|
options.beta
|
|
);
|
|
|
|
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
|
tensor_c.sync_host();
|
|
|
|
bool passed = cutlass::reference::host::TensorEquals(
|
|
tensor_c.host_view(),
|
|
tensor_ref_c.host_view());
|
|
|
|
if (!passed) {
|
|
result.reference_check = cutlass::Status::kErrorInternal;
|
|
std::cout << "ERROR - results miscompared.\n";
|
|
}
|
|
else {
|
|
result.reference_check = cutlass::Status::kSuccess;
|
|
std::cout << "Passed.\n";
|
|
}
|
|
}
|
|
else {
|
|
result.reference_check = cutlass::Status::kInvalid;
|
|
}
|
|
|
|
if (options.save_workspace) {
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << "22_quaternion_conv_"
|
|
<< options.input_size.n() << "x" << options.input_size.h() << "x" << options.input_size.w() << "x" << options.input_size.c()
|
|
<< "_"
|
|
<< options.filter_size.n() << "x" << options.filter_size.h() << "x" << options.filter_size.w() << "x" << options.filter_size.c()
|
|
<< ".dat";
|
|
|
|
std::ofstream output_workspace(ss.str());
|
|
|
|
output_workspace
|
|
<< "Input = \n" << tensor_a.host_view() << "\n\n"
|
|
<< "Filters = \n" << tensor_b.host_view() << "\n\n";
|
|
|
|
if (options.reference_check) {
|
|
output_workspace << "Reference = \n" << tensor_ref_c.host_view() << "\n\n";
|
|
}
|
|
|
|
output_workspace << "Computed = \n" << tensor_c.host_view() << std::endl;
|
|
|
|
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
|
|
}
|
|
|
|
//
|
|
// Performance measurement
|
|
//
|
|
|
|
if (options.measure_performance) {
|
|
|
|
cudaEvent_t events[2];
|
|
|
|
for (auto & event : events) {
|
|
result.error = cudaEventCreate(&event);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Record an event at the start of a series of convolution operations.
|
|
result.error = cudaEventRecord(events[0]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Launch a sequence of implicit GEMM operations on the device
|
|
for (int iteration = 0; iteration < options.iterations; ++iteration) {
|
|
result.status = implicit_gemm_op();
|
|
CUTLASS_CHECK(result.status);
|
|
}
|
|
|
|
// Record an event when the convolutions have been launched.
|
|
result.error = cudaEventRecord(events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Wait for work on the device to complete.
|
|
result.error = cudaEventSynchronize(events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Measure elapsed runtime
|
|
float runtime_ms = 0;
|
|
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Print average runtime and GFLOPs.
|
|
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
|
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
|
|
|
// Cleanup
|
|
for (auto event : events) {
|
|
(void)cudaEventDestroy(event);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char const **args) {
|
|
|
|
Options options;
|
|
|
|
options.parse(argc, args);
|
|
|
|
if (options.help) {
|
|
options.print_usage(std::cout) << std::endl;
|
|
return 0;
|
|
}
|
|
|
|
if (options.benchmark) {
|
|
// Benchmark several layers
|
|
|
|
int batch_sizes[] = {1, 32, 64, 128, 256, 512};
|
|
|
|
struct Benchmark {
|
|
int h, w, c, k, r, s;
|
|
} layers[] = {
|
|
{56, 56, 64, 256, 1, 1},
|
|
{56, 56, 64, 64, 1, 1},
|
|
{56, 56, 64, 64, 3, 3},
|
|
{56, 56, 256, 64, 1, 1},
|
|
{56, 56, 256, 512, 1, 1},
|
|
{56, 56, 256, 128, 1, 1},
|
|
{28, 28, 128, 128, 3, 3},
|
|
{28, 28, 128, 512, 1, 1},
|
|
{28, 28, 512, 128, 1, 1},
|
|
{28, 28, 512, 1024, 1, 1},
|
|
{28, 28, 512, 256, 1, 1},
|
|
{14, 14, 256, 256, 3, 3},
|
|
{14, 14, 256, 1024, 1, 1},
|
|
{14, 14, 1024, 256, 1, 1},
|
|
{14, 14, 1024, 2048, 1, 1},
|
|
{14, 14, 1024, 512, 1, 1},
|
|
{7, 7, 512, 512, 3, 3},
|
|
};
|
|
|
|
Result::print_header(std::cout, options) << std::endl;
|
|
|
|
int idx = 1;
|
|
|
|
for (auto const &layer : layers) {
|
|
for (auto N : batch_sizes) {
|
|
|
|
options.update({N, layer.h, layer.w, layer.c}, {layer.k, layer.r, layer.s, layer.c});
|
|
|
|
Result result = profile_convolution(options);
|
|
result.print(std::cout, idx, options) << std::endl;
|
|
}
|
|
|
|
++idx;
|
|
}
|
|
}
|
|
else {
|
|
|
|
// Execute one problem size
|
|
if (!options.valid()) {
|
|
std::cerr << "Invalid problem." << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
Result result = profile_convolution(options);
|
|
|
|
Result::print_header(std::cout, options) << std::endl;
|
|
result.print(std::cout, 1, options) << std::endl;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|