cutlass/examples/cute/tutorial/sgemm_sm80.cu
Vijay Thakkar be60a0b272
CUTLASS 3.5.1 (#1623)
* CUTLASS 3.5.1

* updates, optimizations, fixes
2024-07-29 08:46:24 -04:00

568 lines
20 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <cstdlib>
#include <cstdio>
#include <cassert>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include "cutlass/util/print_error.hpp"
#include "cutlass/util/GPU_Clock.hpp"
#include "cutlass/util/helper_cuda.hpp"
template <class ProblemShape, class CtaTiler,
class TA, class AStride, class ASmemLayout, class TiledCopyA,
class TB, class BStride, class BSmemLayout, class TiledCopyB,
class TC, class CStride, class CSmemLayout, class TiledMma,
class Alpha, class Beta>
__global__ static
__launch_bounds__(decltype(size(TiledMma{}))::value)
void
gemm_device(ProblemShape shape_MNK, CtaTiler cta_tiler,
TA const* A, AStride dA, ASmemLayout sA_layout, TiledCopyA copy_a,
TB const* B, BStride dB, BSmemLayout sB_layout, TiledCopyB copy_b,
TC * C, CStride dC, CSmemLayout , TiledMma mma,
Alpha alpha, Beta beta)
{
using namespace cute;
// Preconditions
CUTE_STATIC_ASSERT_V(rank(shape_MNK) == Int<3>{}); // (M, N, K)
CUTE_STATIC_ASSERT_V(rank(cta_tiler) == Int<3>{}); // (BLK_M, BLK_N, BLK_K)
CUTE_STATIC_ASSERT_V(size(copy_a) == size(mma)); // NumThreads
CUTE_STATIC_ASSERT_V(size(copy_b) == size(mma)); // NumThreads
static_assert(is_static<ASmemLayout>::value);
static_assert(is_static<BSmemLayout>::value);
static_assert(is_static<CSmemLayout>::value);
CUTE_STATIC_ASSERT_V(size<0>(ASmemLayout{}) == size<0>(cta_tiler)); // BLK_M
CUTE_STATIC_ASSERT_V(size<0>(CSmemLayout{}) == size<0>(cta_tiler)); // BLK_M
CUTE_STATIC_ASSERT_V(size<0>(BSmemLayout{}) == size<1>(cta_tiler)); // BLK_N
CUTE_STATIC_ASSERT_V(size<1>(CSmemLayout{}) == size<1>(cta_tiler)); // BLK_N
CUTE_STATIC_ASSERT_V(size<1>(ASmemLayout{}) == size<2>(cta_tiler)); // BLK_K
CUTE_STATIC_ASSERT_V(size<1>(BSmemLayout{}) == size<2>(cta_tiler)); // BLK_K
CUTE_STATIC_ASSERT_V(congruent(select<0,2>(shape_MNK), dA)); // dA strides for shape MK
CUTE_STATIC_ASSERT_V(congruent(select<1,2>(shape_MNK), dB)); // dB strides for shape NK
CUTE_STATIC_ASSERT_V(congruent(select<0,1>(shape_MNK), dC)); // dC strides for shape MN
//
// Full and Tiled Tensors
//
// Represent the full tensors
Tensor mA = make_tensor(make_gmem_ptr(A), select<0,2>(shape_MNK), dA); // (M,K)
Tensor mB = make_tensor(make_gmem_ptr(B), select<1,2>(shape_MNK), dB); // (N,K)
Tensor mC = make_tensor(make_gmem_ptr(C), select<0,1>(shape_MNK), dC); // (M,N)
// Get the appropriate blocks for this thread block
auto cta_coord = make_coord(blockIdx.x, blockIdx.y, _); // (m,n,k)
Tensor gA = local_tile(mA, cta_tiler, cta_coord, Step<_1, X,_1>{}); // (BLK_M,BLK_K,k)
Tensor gB = local_tile(mB, cta_tiler, cta_coord, Step< X,_1,_1>{}); // (BLK_N,BLK_K,k)
Tensor gC = local_tile(mC, cta_tiler, cta_coord, Step<_1,_1, X>{}); // (BLK_M,BLK_N)
// Shared memory buffers
__shared__ TA smemA[cosize_v<ASmemLayout>];
__shared__ TB smemB[cosize_v<BSmemLayout>];
Tensor sA = make_tensor(make_smem_ptr(smemA), sA_layout); // (BLK_M,BLK_K,PIPE)
Tensor sB = make_tensor(make_smem_ptr(smemB), sB_layout); // (BLK_N,BLK_K,PIPE)
//
// Partition the copying of A and B tiles across the threads
//
ThrCopy thr_copy_a = copy_a.get_slice(threadIdx.x);
Tensor tAgA = thr_copy_a.partition_S(gA); // (CPY,CPY_M,CPY_K,k)
Tensor tAsA = thr_copy_a.partition_D(sA); // (CPY,CPY_M,CPY_K,PIPE)
ThrCopy thr_copy_b = copy_b.get_slice(threadIdx.x);
Tensor tBgB = thr_copy_b.partition_S(gB); // (CPY,CPY_N,CPY_K,k)
Tensor tBsB = thr_copy_b.partition_D(sB); // (CPY,CPY_N,CPY_K,PIPE)
CUTE_STATIC_ASSERT_V(size<1>(tAgA) == size<1>(tAsA)); // CPY_M
CUTE_STATIC_ASSERT_V(size<2>(tAgA) == size<2>(tAsA)); // CPY_K
CUTE_STATIC_ASSERT_V(size<1>(tBgB) == size<1>(tBsB)); // CPY_N
CUTE_STATIC_ASSERT_V(size<2>(tBgB) == size<2>(tBsB)); // CPY_K
//
// PREFETCH
//
auto K_PIPE_MAX = size<3>(tAsA);
// Total count of tiles
int k_tile_count = size<3>(tAgA);
// Current tile index in gmem to read from
int k_tile_next = 0;
// Start async loads for all pipes but the last
CUTE_UNROLL
for (int k_pipe = 0; k_pipe < K_PIPE_MAX-1; ++k_pipe) {
copy(copy_a, tAgA(_,_,_,k_tile_next), tAsA(_,_,_,k_pipe));
copy(copy_b, tBgB(_,_,_,k_tile_next), tBsB(_,_,_,k_pipe));
cp_async_fence();
--k_tile_count;
if (k_tile_count > 0) { ++k_tile_next; }
}
//
// Define A/B partitioning and C accumulators
//
ThrMMA thr_mma = mma.get_slice(threadIdx.x);
Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE)
Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
Tensor tCgC = thr_mma.partition_C(gC); // (MMA,MMA_M,MMA_N)
// Allocate registers for pipelining
Tensor tCrA = thr_mma.make_fragment_A(tCsA(_,_,_,0)); // (MMA,MMA_M,MMA_K)
Tensor tCrB = thr_mma.make_fragment_B(tCsB(_,_,_,0)); // (MMA,MMA_N,MMA_K)
// Allocate the accumulators -- same size as the projected data
Tensor tCrC = thr_mma.make_fragment_C(tCgC); // (MMA,MMA_M,MMA_N)
CUTE_STATIC_ASSERT_V(( shape(tCrA) == take<0,3>(shape(tCsA)))); // (MMA,MMA_M,MMA_K)
CUTE_STATIC_ASSERT_V(( shape(tCrB) == take<0,3>(shape(tCsB)))); // (MMA,MMA_N,MMA_K)
CUTE_STATIC_ASSERT_V(( shape(tCrC) == take<0,3>(shape(tCgC)))); // (MMA,MMA_M,MMA_N)
CUTE_STATIC_ASSERT_V((size<1>(tCgC) == size<1>(tCsA))); // MMA_M
CUTE_STATIC_ASSERT_V((size<2>(tCgC) == size<1>(tCsB))); // MMA_N
CUTE_STATIC_ASSERT_V((size<2>(tCsA) == size<2>(tCsB))); // MMA_K
// Clear the accumulators
clear(tCrC);
#if 0
if(thread0()) {
print(" mA : "); print( mA); print("\n");
print(" gA : "); print( gA); print("\n");
print(" sA : "); print( sA); print("\n");
print("tAgA : "); print(tAgA); print("\n");
print("tAsA : "); print(tAsA); print("\n");
}
#endif
#if 0
if(thread0()) {
print(" mB : "); print( mB); print("\n");
print(" gB : "); print( gB); print("\n");
print(" sB : "); print( sB); print("\n");
print("tBgB : "); print(tBgB); print("\n");
print("tBsB : "); print(tBsB); print("\n");
}
#endif
#if 0
if(thread0()) {
print(" mC : "); print( mC); print("\n");
print(" gC : "); print( gC); print("\n");
print("tCsA : "); print(tCsA); print("\n");
print("tCsB : "); print(tCsB); print("\n");
print("tCgC : "); print(tCgC); print("\n");
print("tCrA : "); print(tCrA); print("\n");
print("tCrB : "); print(tCrB); print("\n");
print("tCrC : "); print(tCrC); print("\n");
}
#endif
#if 1
// Current pipe index in smem to read from
int smem_pipe_read = 0;
// Current pipe index in smem to write to
int smem_pipe_write = K_PIPE_MAX-1;
// Pipe slice
Tensor tCsA_p = tCsA(_,_,_,smem_pipe_read);
Tensor tCsB_p = tCsB(_,_,_,smem_pipe_read);
// Size of the register pipeline
auto K_BLOCK_MAX = size<2>(tCrA);
// PREFETCH register pipeline
if (K_BLOCK_MAX > 1) {
// Wait until our first prefetched tile is loaded in
cp_async_wait<K_PIPE_MAX-2>();
__syncthreads();
// Prefetch the first rmem from the first k-tile
copy(tCsA_p(_,_,Int<0>{}), tCrA(_,_,Int<0>{}));
copy(tCsB_p(_,_,Int<0>{}), tCrB(_,_,Int<0>{}));
}
//
// PIPELINED MAIN LOOP
// TUTORIAL: Example of a gemm loop that pipelines shared memory using SM80's cp.async instructions
// and explicit pipelines in shared memory.
// Data is read from global(k_tile_next) to shared(smem_pipe_write).
// Data is read from shared(smem_pipe_read) to registers(k_block_next).
// Data is computed on registers(b_block).
//
// This allows all copies and compute to overlap:
// Copy from gmem->smem can overlap with copies from smem->rmem and compute on rmem.
// Copy from smem->rmem can overlap with compute on rmem.
//
CUTE_NO_UNROLL
while (k_tile_count > -(K_PIPE_MAX-1))
{
CUTE_UNROLL
for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block)
{
if (k_block == K_BLOCK_MAX - 1)
{
// Slice the smem_pipe_read smem
tCsA_p = tCsA(_,_,_,smem_pipe_read);
tCsB_p = tCsB(_,_,_,smem_pipe_read);
// Commit the smem for smem_pipe_read
cp_async_wait<K_PIPE_MAX-2>();
__syncthreads();
}
// Load A, B shmem->regs for k_block+1
auto k_block_next = (k_block + Int<1>{}) % K_BLOCK_MAX; // static
copy(tCsA_p(_,_,k_block_next), tCrA(_,_,k_block_next));
copy(tCsB_p(_,_,k_block_next), tCrB(_,_,k_block_next));
// Copy gmem to smem before computing gemm on each k-pipe
if (k_block == 0)
{
copy(copy_a, tAgA(_,_,_,k_tile_next), tAsA(_,_,_,smem_pipe_write));
copy(copy_b, tBgB(_,_,_,k_tile_next), tBsB(_,_,_,smem_pipe_write));
cp_async_fence();
// Advance the gmem tile
--k_tile_count;
if (k_tile_count > 0) { ++k_tile_next; }
// Advance the smem pipe
smem_pipe_write = smem_pipe_read;
++smem_pipe_read;
smem_pipe_read = (smem_pipe_read == K_PIPE_MAX) ? 0 : smem_pipe_read;
}
// Thread-level register gemm for k_block
gemm(mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
}
}
#endif
//
// Epilogue
//
axpby(alpha, tCrC, beta, tCgC);
}
// Setup params for a NT GEMM
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm_nt(int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
using namespace cute;
// Define shapes (dynamic)
auto M = int(m);
auto N = int(n);
auto K = int(k);
auto prob_shape = make_shape(M, N, K); // (M, N, K)
// Define NT strides (mixed)
auto dA = make_stride(Int<1>{}, ldA); // (dM, dK)
auto dB = make_stride(Int<1>{}, ldB); // (dN, dK)
auto dC = make_stride(Int<1>{}, ldC); // (dM, dN)
// Define CTA tile sizes (static)
auto bM = Int<128>{};
auto bN = Int<128>{};
auto bK = Int< 8>{};
auto cta_tiler = make_shape(bM, bN, bK); // (BLK_M, BLK_N, BLK_K)
auto bP = Int<3>{}; // Pipeline
// Define the smem layouts (static)
auto sA = make_layout(make_shape(bM, bK, bP)); // (m,k,p) -> smem_idx; m-major
auto sB = make_layout(make_shape(bN, bK, bP)); // (n,k,p) -> smem_idx; n-major
auto sC = make_layout(make_shape(bM, bN)); // (m,n) -> smem_idx; m-major
// Define the thread layouts (static)
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, TA>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 m-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 m-major
TiledCopy copyB = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, TB>{},
Layout<Shape<_32,_8>>{}, // Thr layout 32x8 n-major
Layout<Shape< _4,_1>>{});// Val layout 4x1 n-major
TiledMMA mmaC = make_tiled_mma(UniversalFMA<TC,TA,TB>{},
Layout<Shape<_16,_16,_1>>{}); // 16x16x1 TiledMMA
#if 0
print(copyA);
print(copyB);
print(mmaC);
#endif
#if 0
print_latex(copyA);
print_latex(copyB);
print_latex(mmaC);
#endif
dim3 dimBlock(size(mmaC));
dim3 dimGrid(size(ceil_div(M, bM)),
size(ceil_div(N, bN)));
gemm_device<<<dimGrid, dimBlock, 0, stream>>>
(prob_shape, cta_tiler,
A, dA, sA, copyA,
B, dB, sB, copyB,
C, dC, sC, mmaC,
alpha, beta);
}
// Setup params for a TN GEMM
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm_tn(int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
using namespace cute;
// Define shapes (dynamic)
auto M = int(m);
auto N = int(n);
auto K = int(k);
auto prob_shape = make_shape(M, N, K); // (M, N, K)
// Define TN strides (mixed)
auto dA = make_stride(ldA, Int<1>{}); // (dM, dK)
auto dB = make_stride(ldB, Int<1>{}); // (dN, dK)
auto dC = make_stride(Int<1>{}, ldC); // (dM, dN)
// Define CTA tile sizes (static)
auto bM = Int<128>{};
auto bN = Int<128>{};
auto bK = Int< 8>{};
auto cta_tiler = make_shape(bM, bN, bK); // (BLK_M, BLK_N, BLK_K)
auto bP = Int<3>{}; // Pipeline
// Define the smem layouts (static)
auto sA_atom = make_layout(make_shape ( bM, bK),
make_stride(Int<1>{}, bM+Int<1>{})); // (m,k) -> smem_idx; padded m-major
[[maybe_unused]] auto sB_atom = make_layout(make_shape ( bN, bK),
make_stride(Int<1>{}, bN+Int<1>{})); // (n,k) -> smem_idx; padded n-major
auto sA = tile_to_shape(sA_atom, make_shape(bM, bK, bP));
auto sB = tile_to_shape(sA_atom, make_shape(bN, bK, bP));
auto sC = make_layout(make_shape(bM, bN)); // (m,n) -> smem_idx
// Define the thread layouts (static)
TiledCopy copyA = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<TA>, TA>{},
Layout<Shape<_32,_8>,Stride<_8,_1>>{}, // Thr layout 32x8 k-major
Layout<Shape< _1,_1>>{}); // Val layout 1x1
TiledCopy copyB = make_tiled_copy(Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<TB>, TB>{},
Layout<Shape<_32,_8>,Stride<_8,_1>>{}, // Thr layout 32x8 k-major
Layout<Shape< _1,_1>>{}); // Val layout 1x1
TiledMMA mmaC = make_tiled_mma(UniversalFMA<TC,TA,TB>{},
Layout<Shape<_16,_16,_1>>{}); // 16x16x1 TiledMMA
#if 0
print(copyA);
print(copyB);
print(mmaC);
#endif
#if 0
print_latex(copyA);
print_latex(copyB);
print_latex(mmaC);
#endif
dim3 dimBlock(size(mmaC));
dim3 dimGrid(size(ceil_div(M, bM)),
size(ceil_div(N, bN)));
gemm_device<<<dimGrid, dimBlock, 0, stream>>>
(prob_shape, cta_tiler,
A, dA, sA, copyA,
B, dB, sB, copyB,
C, dC, sC, mmaC,
alpha, beta);
}
template <class TA, class TB, class TC,
class Alpha, class Beta>
void
gemm(char transA, char transB, int m, int n, int k,
Alpha alpha,
TA const* A, int ldA,
TB const* B, int ldB,
Beta beta,
TC * C, int ldC,
cudaStream_t stream = 0)
{
if (transA == 'N' && transB == 'T') {
return gemm_nt(m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC, stream);
} else
if (transA == 'T' && transB == 'N') {
return gemm_tn(m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC, stream);
}
assert(false && "Not implemented");
}
int main(int argc, char** argv)
{
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (props.major < 8) {
std::cout << "This example requires an Ampere GPU or newer (CC >= 80)" << std::endl;
// Return 0 so tests pass if run on unsupported architectures or CUDA Toolkits.
return 0;
}
int m = 5120;
if (argc >= 2)
sscanf(argv[1], "%d", &m);
int n = 5120;
if (argc >= 3)
sscanf(argv[2], "%d", &n);
int k = 4096;
if (argc >= 4)
sscanf(argv[3], "%d", &k);
char transA = 'N';
if (argc >= 5)
sscanf(argv[4], "%c", &transA);
char transB = 'T';
if (argc >= 6)
sscanf(argv[5], "%c", &transB);
using TA = float;
using TB = float;
using TC = float;
using TI = float;
TI alpha = 1.0;
TI beta = 0.0;
std::cout << "M = " << m << std::endl;
std::cout << "N = " << n << std::endl;
std::cout << "K = " << k << std::endl;
std::cout << "C = A^" << transA << " B^" << transB << std::endl;
thrust::host_vector<TA> h_A(m*k);
thrust::host_vector<TB> h_B(n*k);
thrust::host_vector<TC> h_C(m*n);
for (int j = 0; j < m*k; ++j) h_A[j] = static_cast<TA>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < n*k; ++j) h_B[j] = static_cast<TB>( 2*(rand() / double(RAND_MAX)) - 1 );
for (int j = 0; j < m*n; ++j) h_C[j] = static_cast<TC>(-1);
thrust::device_vector<TA> d_A = h_A;
thrust::device_vector<TB> d_B = h_B;
thrust::device_vector<TC> d_C = h_C;
double gflops = (2.0*m*n*k) * 1e-9;
const int timing_iterations = 100;
GPU_Clock timer;
int ldA = 0, ldB = 0, ldC = m;
if (transA == 'N') {
ldA = m;
} else if (transA == 'T') {
ldA = k;
} else {
assert(false);
}
if (transB == 'N') {
ldB = k;
} else if (transB == 'T') {
ldB = n;
} else {
assert(false);
}
// Run once
d_C = h_C;
gemm(transA, transB, m, n, k,
alpha,
d_A.data().get(), ldA,
d_B.data().get(), ldB,
beta,
d_C.data().get(), ldC);
CUTE_CHECK_LAST();
thrust::host_vector<TC> cute_result = d_C;
// Timing iterations
timer.start();
for (int i = 0; i < timing_iterations; ++i) {
gemm(transA, transB, m, n, k,
alpha,
d_A.data().get(), ldA,
d_B.data().get(), ldB,
beta,
d_C.data().get(), ldC);
}
double cute_time = timer.seconds() / timing_iterations;
CUTE_CHECK_LAST();
printf("CUTE_GEMM: [%6.1f]GFlop/s (%6.4f)ms\n", gflops / cute_time, cute_time*1000);
return 0;
}