
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
169 lines
6.5 KiB
C++
169 lines
6.5 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
#pragma once
|
|
|
|
#include "cutlass/matrix_traits.h"
|
|
#include "tools/util/type_traits.h"
|
|
|
|
namespace perf {
|
|
|
|
/// Dispatcher for cuBLAS kernels
|
|
template <typename AType, typename BType, typename CType, typename Accumulator, typename Scalar>
|
|
struct CublasGemmDispatch {
|
|
/// Type used for device-side allocations
|
|
typedef typename cutlass::TypeTraits<AType>::device_type ADeviceType;
|
|
typedef typename cutlass::TypeTraits<BType>::device_type BDeviceType;
|
|
typedef typename cutlass::TypeTraits<CType>::device_type CDeviceType;
|
|
typedef typename cutlass::TypeTraits<Accumulator>::device_type AccumulatorDeviceType;
|
|
typedef typename cutlass::TypeTraits<Scalar>::device_type ScalarDeviceType;
|
|
|
|
static cublasOperation_t convert(cutlass::MatrixLayout::Kind layout) {
|
|
switch (layout) {
|
|
case cutlass::MatrixLayout::kRowMajor:
|
|
return CUBLAS_OP_T;
|
|
case cutlass::MatrixLayout::kColumnMajor:
|
|
return CUBLAS_OP_N;
|
|
default:
|
|
break;
|
|
}
|
|
return CUBLAS_OP_N;
|
|
}
|
|
|
|
/// Launches a cuBLAS GEMM kernel
|
|
cublasStatus_t operator()(cublasHandle_t handle,
|
|
cutlass::MatrixLayout::Kind layout_a,
|
|
cutlass::MatrixLayout::Kind layout_b,
|
|
int m,
|
|
int n,
|
|
int k,
|
|
Scalar alpha,
|
|
const ADeviceType *A,
|
|
int lda,
|
|
const BDeviceType *B,
|
|
int ldb,
|
|
Scalar beta,
|
|
CDeviceType *C,
|
|
int ldc,
|
|
cublasGemmAlgo_t algorithm) {
|
|
#if CUTLASS_ENABLE_CUBLAS
|
|
return cublasGemmEx(handle,
|
|
convert(layout_a),
|
|
convert(layout_b),
|
|
m,
|
|
n,
|
|
k,
|
|
reinterpret_cast<ScalarDeviceType const *>(&alpha),
|
|
A,
|
|
cutlass::TypeTraits<ADeviceType>::cublas_type,
|
|
lda,
|
|
B,
|
|
cutlass::TypeTraits<BDeviceType>::cublas_type,
|
|
ldb,
|
|
reinterpret_cast<ScalarDeviceType const *>(&beta),
|
|
C,
|
|
cutlass::TypeTraits<CDeviceType>::cublas_type,
|
|
ldc,
|
|
cutlass::TypeTraits<AccumulatorDeviceType>::cublas_type,
|
|
algorithm);
|
|
#else
|
|
return CUBLAS_STATUS_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/// Dispatcher for batched strided cuBLAS kernels
|
|
template <typename AType, typename BType, typename CType, typename Accumulator, typename Scalar>
|
|
struct CublasBatchedStridedGemmDispatch {
|
|
/// Type used for device-side allocations
|
|
typedef typename cutlass::TypeTraits<AType>::device_type ADeviceType;
|
|
typedef typename cutlass::TypeTraits<BType>::device_type BDeviceType;
|
|
typedef typename cutlass::TypeTraits<CType>::device_type CDeviceType;
|
|
typedef typename cutlass::TypeTraits<Accumulator>::device_type AccumulatorDeviceType;
|
|
typedef typename cutlass::TypeTraits<Scalar>::device_type ScalarDeviceType;
|
|
|
|
static cublasOperation_t convert(cutlass::MatrixLayout::Kind layout) {
|
|
switch (layout) {
|
|
case cutlass::MatrixLayout::kRowMajor:
|
|
return CUBLAS_OP_T;
|
|
case cutlass::MatrixLayout::kColumnMajor:
|
|
return CUBLAS_OP_N;
|
|
default:
|
|
break;
|
|
}
|
|
return CUBLAS_OP_N;
|
|
}
|
|
|
|
/// Launches a cuBLAS GEMM kernel
|
|
cublasStatus_t operator()(cublasHandle_t handle,
|
|
cutlass::MatrixLayout::Kind layout_a,
|
|
cutlass::MatrixLayout::Kind layout_b,
|
|
int m,
|
|
int n,
|
|
int k,
|
|
Scalar alpha,
|
|
const ADeviceType *A,
|
|
int lda,
|
|
long long int batch_stride_A,
|
|
const BDeviceType *B,
|
|
int ldb,
|
|
long long int batch_stride_B,
|
|
Scalar beta,
|
|
CDeviceType *C,
|
|
int ldc,
|
|
long long int batch_stride_C,
|
|
int batch_count,
|
|
cublasGemmAlgo_t algorithm) {
|
|
#if CUTLASS_ENABLE_CUBLAS && defined(CUDA_VERSION) && CUDA_VERSION >= 9010
|
|
return cublasGemmStridedBatchedEx(handle,
|
|
convert(layout_a),
|
|
convert(layout_b),
|
|
m,
|
|
n,
|
|
k,
|
|
reinterpret_cast<ScalarDeviceType const *>(&alpha),
|
|
A,
|
|
cutlass::TypeTraits<ADeviceType>::cublas_type,
|
|
lda,
|
|
batch_stride_A,
|
|
B,
|
|
cutlass::TypeTraits<BDeviceType>::cublas_type,
|
|
ldb,
|
|
batch_stride_B,
|
|
reinterpret_cast<ScalarDeviceType const *>(&beta),
|
|
C,
|
|
cutlass::TypeTraits<CDeviceType>::cublas_type,
|
|
ldc,
|
|
batch_stride_C,
|
|
batch_count,
|
|
cutlass::TypeTraits<AccumulatorDeviceType>::cublas_type,
|
|
algorithm);
|
|
#else
|
|
return CUBLAS_STATUS_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // namespace perf
|