cutlass/tools/test/perf/gemm/cutlass_dispatch_splitK_PI.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

189 lines
6.1 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/matrix_traits.h"
#include "tools/util/type_traits.h"
#include <cuda_runtime_api.h>
#include <assert.h>
namespace perf {
template <typename KernelClass_,
typename Index_,
typename ScalarA_,
typename ScalarB_,
typename ScalarC_,
typename ScalarD_,
typename Compute_,
typename ScalarEpilogue_,
bool ThreadMultiplyAdd_,
#if CUTLASS_ENABLE_CUBLAS
bool RunCuBLAS_ = true
#else
bool RunCuBLAS_ = false
#endif
>
struct CutlassDispatchSplitKPIGemm {
typedef typename KernelClass_::Params Params;
typedef KernelClass_ KernelClass;
typedef Index_ Index;
typedef ScalarA_ ScalarA;
typedef ScalarB_ ScalarB;
typedef ScalarC_ ScalarC;
typedef ScalarD_ ScalarD;
typedef Compute_ Compute;
typedef ScalarEpilogue_ ScalarEpilogue;
static bool const kThreadMultiplyAdd = ThreadMultiplyAdd_;
static bool const kRunCuBLAS = RunCuBLAS_;
static cutlass::MatrixLayout::Kind const kLayoutA = KernelClass::Traits::kLayoutA;
static cutlass::MatrixLayout::Kind const kLayoutB = KernelClass::Traits::kLayoutB;
//
// Data members
//
/// Params argument
Params params;
/// splitK PI require workspace
typename cutlass::TypeTraits<Compute>::device_type *workspace_ptr;
//
// Methods
//
/// Ctor Initializes params object
CutlassDispatchSplitKPIGemm(Index m,
Index n,
Index k,
ScalarEpilogue alpha,
ScalarA const* d_a,
Index lda,
ScalarB const* d_b,
Index ldb,
ScalarEpilogue beta,
ScalarC const* d_c,
Index ldc,
ScalarD* d_d,
Index ldd) {
params.init_problem(m, n, k);
size_t workspace_size_in_byte = params.required_workspace_memory_in_byte();
size_t available_device_memory_in_byte = 0;
size_t device_memory_in_byte = 0;
cudaError_t cudaMemGetInfo_err = cudaMemGetInfo(&available_device_memory_in_byte, &device_memory_in_byte);
if (cudaMemGetInfo_err != cudaSuccess) {
std::cout << "\ncudaMemGetInfo error: " << cudaGetErrorString(cudaMemGetInfo_err)
<< "\n";
}
if (workspace_size_in_byte > available_device_memory_in_byte) {
std::cout << "reqested workspace memory size("<< workspace_size_in_byte <<
") is larger than available memory size("<< available_device_memory_in_byte << "). Abort." << std::endl;
throw std::runtime_error("reqested workspace memory size is larger than available memory size. Abort.");
}
cudaError_t workspace_err = cudaMalloc(&workspace_ptr, workspace_size_in_byte);
if (workspace_err != cudaSuccess) {
std::cout << "\nCUDA workspace malloc error: " << cudaGetErrorString(workspace_err)
<< "\n";
}
params.initialize(alpha, d_a, lda, d_b, ldb, beta, d_c, ldc, d_d, ldd, workspace_ptr);
}
/// Initializes batched strided params object
CutlassDispatchSplitKPIGemm(Index m,
Index n,
Index k,
ScalarEpilogue alpha,
ScalarA const* d_a,
Index lda,
long long int batch_stride_A,
ScalarB const* d_b,
Index ldb,
long long int batch_stride_B,
ScalarEpilogue beta,
ScalarC const* d_c,
Index ldc,
long long int batch_stride_C,
ScalarD* d_d,
Index ldd,
long long int batch_stride_D,
Index batch_count) {
assert(0);//batched strided splitK should never be called
}
/// Launches kernel
cudaError_t operator()() { return KernelClass::launch(params); }
~CutlassDispatchSplitKPIGemm() {
cudaError_t workspace_err = cudaFree(workspace_ptr);
if (workspace_err != cudaSuccess) {
std::cout << "\nCUDA workspace malloc error: " << cudaGetErrorString(workspace_err)
<< "\n";
}
}
};
template<
typename SplitKPIGemmTraits_
>
struct CutlassDispatchSplitKPIGemmBasic {
///
typedef SplitKPIGemmTraits_ Traits;
///
typedef typename Traits::KernelClass KernelClass;
/// Index type
typedef typename Traits::Index Index;
/// The scalar for A.
typedef typename Traits::ScalarA ScalarA;
/// The scalar for B.
typedef typename Traits::ScalarB ScalarB;
/// The scalar for C.
typedef typename Traits::ScalarC ScalarC;
/// The scalar for D.
typedef typename Traits::ScalarD ScalarD;
typedef ScalarD Compute;
typedef Compute ScalarEpilogue;
typedef CutlassDispatchSplitKPIGemm<KernelClass,
Index,
ScalarA,
ScalarB,
ScalarC,
ScalarD,
Compute,
ScalarEpilogue,
true>
Dispatch;
};
} //namespace perf