cutlass/tools/test/unit/gemm/epilogue_functor.cu
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

122 lines
4.7 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "cutlass_unit_test.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/linear_scaling_device_ptr.h"
#include "cutlass/gemm/sgemm_traits.h"
#include "tools/test/unit/gemm/gemm_testbed.h"
#include "tools/test/unit/gemm/run_gemm.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// This example defines an SGEMM with a linear scaling functor that supports optionally passing
// alpha and beta via device-side pointers as in cuBLAS.
TEST(Sgemm_epilogue_functor, device_ptr_mode_sgemm_1024x512x128_nt) {
typedef cutlass::gemm::SgemmTraits<
cutlass::MatrixLayout::kColumnMajor,
cutlass::MatrixLayout::kRowMajor,
cutlass::Shape<8, 128, 128>,
cutlass::gemm::LinearScalingDevicePtr<float>
>
SgemmTraits;
// Define a GEMM problem size
int const m = 1025;
int const n = 512;
int const k = 128;
// Define scalars
float alpha_host = 3;
float beta_host = 2;
// Define a device-backed tensor to contain the scalars
cutlass::HostTensor<float, 1> device_scalars(2);
// Copy scalar values to device memory for device-ptr mode
device_scalars.at(0) = alpha_host;
device_scalars.at(1) = beta_host;
device_scalars.sync_device();
// Construct a GemmTestbed instance
test::GemmTestbed<
float, // AType
float, // BType
float, // CType
float, // Accumulator
float // Scalar
>
testbed(m,
n,
k,
test::convert(SgemmTraits::kLayoutA),
test::convert(SgemmTraits::kLayoutB),
alpha_host,
beta_host);
testbed.initialize();
//
// Construct a CUTLASS GEMM and initialize parameters
//
typedef cutlass::gemm::Gemm<SgemmTraits> Gemm;
typename Gemm::Params params;
params.initialize(testbed.M(),
testbed.N(),
testbed.K(),
0, // alpha ignored
testbed.ptr_A(),
testbed.lda(),
testbed.ptr_B(),
testbed.ldb(),
0, // beta ignored
testbed.ptr_C_initial(),
testbed.ldc(),
testbed.ptr_computed(),
testbed.ldc());
// Explicitly call the epilogue functor's initialize method to pass additional arguments
params.epilogue.functor.initialize(
device_scalars.device_data() + 0, // pointer to alpha in device memory
device_scalars.device_data() + 1); // pointer to beta in device memory
// Launch the CUTLASS SGEMM kernel
Gemm::launch(params);
// Report any errors
cudaError_t result = cudaDeviceSynchronize();
ASSERT_EQ(result, cudaSuccess)
<< "\nCUDA kernel launch error: " << cudaGetErrorString(result)
<< "\n";
// Verify result
ASSERT_TRUE(testbed.verify_with_cublas());
}
////////////////////////////////////////////////////////////////////////////////////////////////////