cutlass/tools/test/unit/gemm/partitionedK_volta884_hgemm.cu
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

294 lines
9.8 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <cublas_v2.h>
#include <cstring>
#include "cutlass_unit_test.h"
#include "tools/util/half.h"
#include "tools/util/host_tensor.h"
#include "tools/util/tensor_view_io.h"
#include "cutlass/gemm/volta884_gemm_traits.h"
#include "cutlass/gemm/gemm.h"
#include "tools/test/unit/gemm/gemm_testbed.h"
#include "tools/test/unit/gemm/run_gemm.h"
#if CUTLASS_ENABLE_TENSOR_CORE_MMA
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x88x10_nn) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 88, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 88;
int partitionK_count = 10;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kColumnMajor,
cutlass::MatrixLayout::kColumnMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x88x10_nt) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 88, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 88;
int partitionK_count = 10;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kColumnMajor,
cutlass::MatrixLayout::kRowMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x88x10_tn) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 88, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 88;
int partitionK_count = 10;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kRowMajor,
cutlass::MatrixLayout::kColumnMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x88x10_tt) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 88, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 88;
int partitionK_count = 10;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kRowMajor,
cutlass::MatrixLayout::kRowMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x128x10_nn) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 128, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 12.
But if we require the partition mulitple to be 8, the first 9 partition
k = k - (k % partition_mulitiple) = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 56
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 128;
int partitionK_count = 10;
int partitionK_multiple = 8;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kColumnMajor,
cutlass::MatrixLayout::kColumnMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count, partitionK_multiple);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x128x10_nt) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 128, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 12.
But if we require the partition mulitple to be 8, the first 9 partition
k = k - (k % partition_mulitiple) = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 56
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 128;
int partitionK_count = 10;
int partitionK_multiple = 8;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kColumnMajor,
cutlass::MatrixLayout::kRowMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count, partitionK_multiple);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x128x10_tn) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 128, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 12.
But if we require the partition mulitple to be 8, the first 9 partition
k = k - (k % partition_mulitiple) = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 56
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 128;
int partitionK_count = 10;
int partitionK_multiple = 8;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kRowMajor,
cutlass::MatrixLayout::kColumnMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count, partitionK_multiple);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Volta884_h884gemm_partitionedK_64x64x32, volta884_h884gemm_128x256x128x10_tt) {
/*
for example
partitionedK gemm, m = 128, n = 256, overall_K = 128, partitionK_count = 10
for the first 9 partition k = overall_k / partitionK_count = 12.
But if we require the partition mulitple to be 8, the first 9 partition
k = k - (k % partition_mulitiple) = 8
for the last partition last_k = overall_k - (partitionK_count - 1) * k = 56
for volta884 it is safe to make sure leading dim are multiple of 8
*/
int m = 128;
int n = 256;
int overall_k = 128;
int partitionK_count = 10;
int partitionK_multiple = 8;
typedef cutlass::gemm::Volta884GemmTraits<
cutlass::MatrixLayout::kRowMajor,
cutlass::MatrixLayout::kRowMajor,
cutlass::Shape<32, 64, 64>,
cutlass::Shape<32, 64, 64>,
half,
half,
half,
2
> GemmTraits;
run_partitioned_k_gemm<GemmTraits>(m, n, overall_k, partitionK_count, partitionK_multiple);
}
#endif // if defined(CUTLASS_ENABLE_TENSOR_CORE_MMA)