
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
176 lines
5.8 KiB
Plaintext
176 lines
5.8 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
#include "cutlass/wmma_matrix.h"
|
|
#if defined(CUTLASS_USE_WMMA_API)
|
|
|
|
#include "cutlass_unit_test.h"
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/gemm/wmma_gemm_traits.h"
|
|
#include "cutlass/reduction/batched_reduction_traits.h"
|
|
#include "tools/test/unit/gemm/gemm_testbed.h"
|
|
#include "tools/test/unit/gemm/run_gemm.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(SplitK_wmma_gemm_16x16x32_splits16, wmma_gemm_128x256x512_nn) {
|
|
const int splits_count = 16;
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int k = 512;
|
|
|
|
/*batched wmma gemm traits*/
|
|
typedef cutlass::gemm::WmmaGemmTraits<
|
|
cutlass::MatrixLayout::kColumnMajor,
|
|
cutlass::MatrixLayout::kColumnMajor,
|
|
cutlass::Shape<32, 16, 16>,
|
|
half,
|
|
half,
|
|
half,
|
|
cutlass::gemm::LinearScaling<half>,
|
|
half
|
|
>
|
|
WmmaGemmTraits;
|
|
/*batched reduction traits*/
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
splits_count,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits;
|
|
|
|
run_splitK_gemm<WmmaGemmTraits, BatchedReductionTraits>(m, n, k, 1/*partitionK_multiple*/, 2.0f, 1.0f, true/*use host reference*/);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(SplitK_wmma_gemm_16x16x32_splits16, wmma_gemm_128x256x512_nt) {
|
|
const int splits_count = 16;
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int k = 512;
|
|
|
|
/*batched wmma gemm traits*/
|
|
typedef cutlass::gemm::WmmaGemmTraits<
|
|
cutlass::MatrixLayout::kColumnMajor,
|
|
cutlass::MatrixLayout::kRowMajor,
|
|
cutlass::Shape<32, 16, 16>,
|
|
half,
|
|
half,
|
|
half,
|
|
cutlass::gemm::LinearScaling<half>,
|
|
half
|
|
>
|
|
WmmaGemmTraits;
|
|
/*batched reduction traits*/
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
splits_count,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits;
|
|
|
|
run_splitK_gemm<WmmaGemmTraits, BatchedReductionTraits>(m, n, k, 1/*partitionK_multiple*/, 1.0f, 0.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(SplitK_wmma_gemm_16x16x32_splits16, wmma_gemm_128x256x512_tn) {
|
|
const int splits_count = 16;
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int k = 512;
|
|
|
|
/*batched wmma gemm traits*/
|
|
typedef cutlass::gemm::WmmaGemmTraits<
|
|
cutlass::MatrixLayout::kRowMajor,
|
|
cutlass::MatrixLayout::kColumnMajor,
|
|
cutlass::Shape<32, 16, 16>,
|
|
half,
|
|
half,
|
|
half,
|
|
cutlass::gemm::LinearScaling<half>,
|
|
half
|
|
>
|
|
WmmaGemmTraits;
|
|
/*batched reduction traits*/
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
splits_count,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits;
|
|
|
|
run_splitK_gemm<WmmaGemmTraits, BatchedReductionTraits>(m, n, k, 1/*partitionK_multiple*/, 1.0f, 0.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(SplitK_wmma_gemm_16x16x32_splits16, wmma_gemm_128x256x512_tt) {
|
|
const int splits_count = 16;
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int k = 512;
|
|
|
|
/*batched wmma gemm traits*/
|
|
typedef cutlass::gemm::WmmaGemmTraits<
|
|
cutlass::MatrixLayout::kRowMajor,
|
|
cutlass::MatrixLayout::kRowMajor,
|
|
cutlass::Shape<32, 16, 16>,
|
|
half,
|
|
half,
|
|
half,
|
|
cutlass::gemm::LinearScaling<half>,
|
|
half
|
|
>
|
|
WmmaGemmTraits;
|
|
/*batched reduction traits*/
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
splits_count,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits;
|
|
|
|
run_splitK_gemm<WmmaGemmTraits, BatchedReductionTraits>(m, n, k, 1/*partitionK_multiple*/, 1.0f, 0.0f);
|
|
}
|
|
|
|
#endif
|