cutlass/tools/util/reference/host/split_complex_gemm.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

255 lines
9.8 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Reference implementation for split-complex GEMM in device-side code.
*/
#pragma once
#include "cutlass/coord.h"
#include "cutlass/matrix_traits.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm_coord.h"
#include "cutlass/util/complex.h"
namespace cutlass {
namespace reference {
namespace host {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefA, /// concept: ZipTensorRef
typename TensorRefB, /// concept: ZipTensorRef
typename TensorRefC, /// concept: ZipTensorRef
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void SplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
platform::complex<ScalarType> beta,
TensorRefC tensor_c,
platform::complex<AccumulatorType> initial_accum) {
typedef typename TensorRefA::First::Storage AType;
typedef typename TensorRefB::First::Storage BType;
typedef typename TensorRefC::First::Storage CType;
typedef platform::complex<AType> ComplexAType;
typedef platform::complex<BType> ComplexBType;
typedef platform::complex<CType> ComplexCType;
typedef platform::complex<ScalarType> ComplexScalarType;
typedef platform::complex<AccumulatorType> ComplexAccumulatorType;
static_assert(
TensorRefA::First::kRank == 2 && TensorRefA::Second::kRank == 2 &&
TensorRefB::First::kRank == 2 && TensorRefB::Second::kRank == 2 &&
TensorRefC::First::kRank == 2 && TensorRefC::Second::kRank == 2,
"Tensors must be of rank 2");
// Note: batch is ignored.
int const M = problem_size.m();
int const N = problem_size.n();
int const K = problem_size.k();
// Blocking necessary to speedup reference implementation
int const Mblock = 32;
int const Nblock = 32;
for (int row_block = 0; row_block < M; row_block += Mblock) {
for (int col_block = 0; col_block < N; col_block += Nblock) {
ComplexAccumulatorType accum[Mblock][Nblock];
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
accum[i][j] = initial_accum;
}
}
for (int k_block = 0; k_block < K; ++k_block) {
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
if (row < M && col < N) {
ComplexAType a(
tensor_a.first.at(MatrixCoord(row, k_block)),
tensor_a.second.at(MatrixCoord(row, k_block))
);
ComplexBType b(
tensor_b.first.at(MatrixCoord(k_block, col)),
tensor_b.second.at(MatrixCoord(k_block, col))
);
accum[i][j] = detail::inner_product(a, b, accum[i][j]);
}
}
}
}
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
MatrixCoord coord = MatrixCoord(row, col);
if (row < M && col < N) {
ComplexScalarType product(
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].real()),
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].imag())
);
ComplexScalarType source(
detail::Cast<CType, ScalarType>::apply(tensor_c.first.at(coord)),
detail::Cast<CType, ScalarType>::apply(tensor_c.second.at(coord))
);
ComplexScalarType result = alpha * product + beta * source;
tensor_c.first.at(coord) = detail::Cast<ScalarType, CType>::apply(result.real());
tensor_c.second.at(coord) = detail::Cast<ScalarType, CType>::apply(result.imag());
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefA, /// concept: ZipTensorRef
typename TensorRefB, /// concept: ZipTensorRef
typename TensorRefC, /// concept: ZipTensorRef
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void SplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
platform::complex<ScalarType> beta,
TensorRefC tensor_c) {
return SplitComplexGemm(problem_size, alpha, tensor_a, tensor_b,beta, tensor_c, ScalarType(0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Batched Split-Complex GEMM
//
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefCollectionA, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionB, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionC, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void BatchedSplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
platform::complex<ScalarType> beta,
TensorRefCollectionC tensor_c,
platform::complex<AccumulatorType> initial_accum) {
typename TensorRefCollectionA::ConstIterator tensor_a_real = tensor_a.first.begin();
typename TensorRefCollectionA::ConstIterator tensor_a_imag = tensor_a.second.begin();
typename TensorRefCollectionB::ConstIterator tensor_b_real = tensor_b.first.begin();
typename TensorRefCollectionB::ConstIterator tensor_b_imag = tensor_b.second.begin();
typename TensorRefCollectionC::ConstIterator tensor_c_real = tensor_c.first.begin();
typename TensorRefCollectionC::ConstIterator tensor_c_imag = tensor_c.second.begin();
for (int batch = 0; batch < problem_size.batch(); ++batch) {
SplitComplexGemm(
problem_size,
alpha,
make_ZipTensorRef(*tensor_a_real, *tensor_a_imag),
make_ZipTensorRef(*tensor_b_real, *tensor_b_imag),
beta,
make_ZipTensorRef(*tensor_c_real, *tensor_c_imag),
initial_accum);
++tensor_a_real;
++tensor_a_imag;
++tensor_b_real;
++tensor_b_imag;
++tensor_c_real;
++tensor_c_imag;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefCollectionA, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionB, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionC, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void BatchedSplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
platform::complex<ScalarType> beta,
TensorRefCollectionC tensor_c) {
BatchedSplitComplexGemm(
problem_size,
alpha,
tensor_a,
tensor_b,
beta,
tensor_c,
platform::complex<ScalarType>(0, 0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace host
} // namespace reference
} // namespace cutlass