
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
255 lines
9.8 KiB
C++
255 lines
9.8 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Reference implementation for split-complex GEMM in device-side code.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/coord.h"
|
|
#include "cutlass/matrix_traits.h"
|
|
#include "cutlass/tensor_view.h"
|
|
#include "cutlass/gemm/gemm_coord.h"
|
|
#include "cutlass/util/complex.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace host {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
|
|
template <
|
|
typename TensorRefA, /// concept: ZipTensorRef
|
|
typename TensorRefB, /// concept: ZipTensorRef
|
|
typename TensorRefC, /// concept: ZipTensorRef
|
|
typename ScalarType, /// real-valued type underlying complex scalars
|
|
typename AccumulatorType /// real-valued type underlying complex accumulators
|
|
>
|
|
void SplitComplexGemm(
|
|
gemm::GemmCoord problem_size,
|
|
platform::complex<ScalarType> alpha,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
platform::complex<ScalarType> beta,
|
|
TensorRefC tensor_c,
|
|
platform::complex<AccumulatorType> initial_accum) {
|
|
|
|
typedef typename TensorRefA::First::Storage AType;
|
|
typedef typename TensorRefB::First::Storage BType;
|
|
typedef typename TensorRefC::First::Storage CType;
|
|
|
|
typedef platform::complex<AType> ComplexAType;
|
|
typedef platform::complex<BType> ComplexBType;
|
|
typedef platform::complex<CType> ComplexCType;
|
|
typedef platform::complex<ScalarType> ComplexScalarType;
|
|
typedef platform::complex<AccumulatorType> ComplexAccumulatorType;
|
|
|
|
static_assert(
|
|
TensorRefA::First::kRank == 2 && TensorRefA::Second::kRank == 2 &&
|
|
TensorRefB::First::kRank == 2 && TensorRefB::Second::kRank == 2 &&
|
|
TensorRefC::First::kRank == 2 && TensorRefC::Second::kRank == 2,
|
|
"Tensors must be of rank 2");
|
|
|
|
// Note: batch is ignored.
|
|
int const M = problem_size.m();
|
|
int const N = problem_size.n();
|
|
int const K = problem_size.k();
|
|
|
|
// Blocking necessary to speedup reference implementation
|
|
int const Mblock = 32;
|
|
int const Nblock = 32;
|
|
|
|
for (int row_block = 0; row_block < M; row_block += Mblock) {
|
|
for (int col_block = 0; col_block < N; col_block += Nblock) {
|
|
|
|
ComplexAccumulatorType accum[Mblock][Nblock];
|
|
|
|
for (int j = 0; j < Nblock; j++) {
|
|
for (int i = 0; i < Mblock; i++) {
|
|
accum[i][j] = initial_accum;
|
|
}
|
|
}
|
|
|
|
for (int k_block = 0; k_block < K; ++k_block) {
|
|
for (int j = 0; j < Nblock; j++) {
|
|
for (int i = 0; i < Mblock; i++) {
|
|
int row = row_block + i;
|
|
int col = col_block + j;
|
|
|
|
if (row < M && col < N) {
|
|
|
|
ComplexAType a(
|
|
tensor_a.first.at(MatrixCoord(row, k_block)),
|
|
tensor_a.second.at(MatrixCoord(row, k_block))
|
|
);
|
|
|
|
ComplexBType b(
|
|
tensor_b.first.at(MatrixCoord(k_block, col)),
|
|
tensor_b.second.at(MatrixCoord(k_block, col))
|
|
);
|
|
|
|
accum[i][j] = detail::inner_product(a, b, accum[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < Nblock; j++) {
|
|
for (int i = 0; i < Mblock; i++) {
|
|
int row = row_block + i;
|
|
int col = col_block + j;
|
|
|
|
MatrixCoord coord = MatrixCoord(row, col);
|
|
if (row < M && col < N) {
|
|
|
|
ComplexScalarType product(
|
|
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].real()),
|
|
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].imag())
|
|
);
|
|
|
|
ComplexScalarType source(
|
|
detail::Cast<CType, ScalarType>::apply(tensor_c.first.at(coord)),
|
|
detail::Cast<CType, ScalarType>::apply(tensor_c.second.at(coord))
|
|
);
|
|
|
|
ComplexScalarType result = alpha * product + beta * source;
|
|
|
|
tensor_c.first.at(coord) = detail::Cast<ScalarType, CType>::apply(result.real());
|
|
tensor_c.second.at(coord) = detail::Cast<ScalarType, CType>::apply(result.imag());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
|
|
template <
|
|
typename TensorRefA, /// concept: ZipTensorRef
|
|
typename TensorRefB, /// concept: ZipTensorRef
|
|
typename TensorRefC, /// concept: ZipTensorRef
|
|
typename ScalarType, /// real-valued type underlying complex scalars
|
|
typename AccumulatorType /// real-valued type underlying complex accumulators
|
|
>
|
|
void SplitComplexGemm(
|
|
gemm::GemmCoord problem_size,
|
|
platform::complex<ScalarType> alpha,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
platform::complex<ScalarType> beta,
|
|
TensorRefC tensor_c) {
|
|
|
|
return SplitComplexGemm(problem_size, alpha, tensor_a, tensor_b,beta, tensor_c, ScalarType(0));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Batched Split-Complex GEMM
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
|
|
template <
|
|
typename TensorRefCollectionA, /// concept: Pair<TensorRefCollection, TensorRefCollection>
|
|
typename TensorRefCollectionB, /// concept: Pair<TensorRefCollection, TensorRefCollection>
|
|
typename TensorRefCollectionC, /// concept: Pair<TensorRefCollection, TensorRefCollection>
|
|
typename ScalarType, /// real-valued type underlying complex scalars
|
|
typename AccumulatorType /// real-valued type underlying complex accumulators
|
|
>
|
|
void BatchedSplitComplexGemm(
|
|
gemm::GemmCoord problem_size,
|
|
platform::complex<ScalarType> alpha,
|
|
TensorRefCollectionA tensor_a,
|
|
TensorRefCollectionB tensor_b,
|
|
platform::complex<ScalarType> beta,
|
|
TensorRefCollectionC tensor_c,
|
|
platform::complex<AccumulatorType> initial_accum) {
|
|
|
|
typename TensorRefCollectionA::ConstIterator tensor_a_real = tensor_a.first.begin();
|
|
typename TensorRefCollectionA::ConstIterator tensor_a_imag = tensor_a.second.begin();
|
|
|
|
typename TensorRefCollectionB::ConstIterator tensor_b_real = tensor_b.first.begin();
|
|
typename TensorRefCollectionB::ConstIterator tensor_b_imag = tensor_b.second.begin();
|
|
|
|
typename TensorRefCollectionC::ConstIterator tensor_c_real = tensor_c.first.begin();
|
|
typename TensorRefCollectionC::ConstIterator tensor_c_imag = tensor_c.second.begin();
|
|
|
|
for (int batch = 0; batch < problem_size.batch(); ++batch) {
|
|
|
|
SplitComplexGemm(
|
|
problem_size,
|
|
alpha,
|
|
make_ZipTensorRef(*tensor_a_real, *tensor_a_imag),
|
|
make_ZipTensorRef(*tensor_b_real, *tensor_b_imag),
|
|
beta,
|
|
make_ZipTensorRef(*tensor_c_real, *tensor_c_imag),
|
|
initial_accum);
|
|
|
|
++tensor_a_real;
|
|
++tensor_a_imag;
|
|
++tensor_b_real;
|
|
++tensor_b_imag;
|
|
++tensor_c_real;
|
|
++tensor_c_imag;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
|
|
template <
|
|
typename TensorRefCollectionA, /// concept: pair<TensorRefCollection, TensorRefCollection>
|
|
typename TensorRefCollectionB, /// concept: pair<TensorRefCollection, TensorRefCollection>
|
|
typename TensorRefCollectionC, /// concept: pair<TensorRefCollection, TensorRefCollection>
|
|
typename ScalarType, /// real-valued type underlying complex scalars
|
|
typename AccumulatorType /// real-valued type underlying complex accumulators
|
|
>
|
|
void BatchedSplitComplexGemm(
|
|
gemm::GemmCoord problem_size,
|
|
platform::complex<ScalarType> alpha,
|
|
TensorRefCollectionA tensor_a,
|
|
TensorRefCollectionB tensor_b,
|
|
platform::complex<ScalarType> beta,
|
|
TensorRefCollectionC tensor_c) {
|
|
|
|
BatchedSplitComplexGemm(
|
|
problem_size,
|
|
alpha,
|
|
tensor_a,
|
|
tensor_b,
|
|
beta,
|
|
tensor_c,
|
|
platform::complex<ScalarType>(0, 0));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace host
|
|
} // namespace reference
|
|
} // namespace cutlass
|