cutlass/tools/util/reference/host/tensor_elementwise.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

479 lines
11 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Defines host-side elementwise operations on TensorView.
*/
#pragma once
// Standard Library includes
#include <fstream>
#include <ostream>
#include <stdexcept>
#include <string>
#include <utility>
#include <cstdlib>
#include <cmath>
// Cutlass includes
#include "cutlass/cutlass.h"
#include "tools/util/distribution.h"
#include "tools/util/type_traits.h"
#include "tools/util/reference/host/tensor_foreach.h"
namespace cutlass {
namespace reference {
namespace host {
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Computes a random uniform distribution
template <typename View_>
struct RandomUniformFunc {
/// View type
typedef View_ View;
/// Scalar type
typedef typename View::Storage T;
/// Coordinate in tensor's index space
typedef typename View::TensorCoord TensorCoord;
/// Parameters structure
struct Params {
/// View object
View view;
/// RNG seed
unsigned seed;
/// Distriubtion
Distribution dist;
/// Default ctor
Params() { }
/// Constructor
Params(
View const &view,
unsigned seed,
Distribution dist
): view(view), seed(seed), dist(dist) { }
};
//
// Data members
//
/// Parameters object
Params params;
//
// Methods
//
/// Device-side initialization of RNG
RandomUniformFunc(Params const &params): params(params) {
std::srand(params.seed);
}
/// Compute random value and update RNG state
void operator()(TensorCoord const &coord) {
double range = params.dist.uniform.max - params.dist.uniform.min;
double rnd = double(std::rand()) / double(RAND_MAX);
rnd = params.dist.uniform.min + range * rnd;
// Random values are cast to integer after scaling by a power of two to facilitate error
// testing
T result;
if (params.dist.int_scale >= 0) {
rnd = double(int(rnd * double(1 << params.dist.int_scale)));
result = T(rnd / double(1 << params.dist.int_scale));
}
else {
result = T(rnd);
}
params.view.at(coord) = result;
}
};
/// Computes a random Gaussian distribution
template <typename View_>
struct RandomGaussianFunc {
/// View type
typedef View_ View;
/// Scalar type
typedef typename View::Storage T;
/// Coordinate in tensor's index space
typedef typename View::TensorCoord TensorCoord;
/// Parameters structure
struct Params {
/// View object
View view;
/// RNG seed
unsigned seed;
/// RNG distribution
Distribution dist;
/// Default ctor
Params() { }
/// Constructor
Params(
View const &view,
unsigned seed,
Distribution dist
): view(view), seed(seed), dist(dist) { }
};
//
// Data members
//
/// Parameters object
Params params;
/// Constant PI
double pi;
//
// Methods
//
/// Device-side initialization of RNG
RandomGaussianFunc(Params const &params): params(params) {
pi = std::acos(-1);
}
/// Compute random value and update RNG state
void operator()(TensorCoord const &coord) {
// Box-Muller transform to generate random numbers with Normal distribution
double u1 = double(std::rand()) / double(RAND_MAX);
double u2 = double(std::rand()) / double(RAND_MAX);
double rnd = std::sqrt(-2 * std::log(u1)) * std::cos(2 * pi * u2);
// Scale according to Gaussian distribution parameters
rnd = params.dist.gaussian.mean + params.dist.gaussian.stddev * rnd;
T result;
if (params.dist.int_scale >= 0) {
rnd = double(int(rnd * double(1 << params.dist.int_scale)));
result = T(rnd / double(1 << params.dist.int_scale));
}
else {
result = T(rnd);
}
params.view.at(coord) = result;
}
};
/// Computes a linear combination of each element
template <typename View_>
struct LinearCombinationFunc {
/// View type
typedef View_ View;
/// Scalar type
typedef typename View::Storage T;
/// Coordinate in tensor's index space
typedef typename View::TensorCoord TensorCoord;
//
// Data members
//
/// TensorView object
View view;
/// Delta
Coord<View::kRank, double> delta;
/// Offset
double offset;
//
// Methods
//
/// Constructor
LinearCombinationFunc(
View const &view,
Distribution dist
): view(view) {
offset = dist.linear.offset;
if (View::kRank >= 1) {
delta[View::kRank - 1] = dist.linear.delta_column;
}
if (View::kRank >= 2) {
delta[View::kRank - 2] = dist.linear.delta_row;
}
// Additional ranks have delta of zero
for (int i = View::kRank - 2; i > 0; --i) {
delta[i - 1] = 0;
}
}
/// Compute linear combination
void operator()(TensorCoord const &coord) {
double result = offset;
for (int i = 0; i < View::kRank; ++i) {
result += delta[i] * double(coord[i]);
}
view.at(coord) = T(result);
}
};
/// Returns 1 or 0 if the coordinate is along the tensor's diagonal
template <typename View_>
struct IdentityFunc {
/// TensorView
typedef View_ View;
/// Scalar type
typedef typename View::Storage T;
/// Coordinate in tensor's index space
typedef typename View::TensorCoord TensorCoord;
//
// Data members
//
/// View object
View view;
/// Default ctor
IdentityFunc(View const &view): view(view) { }
/// Computes an identity
void operator()(TensorCoord const &coord) {
bool equal = true;
for (int i = 0; i < View::kRank; ++i) {
if (coord[i] != coord[0]) {
equal = false;
}
}
view.at(coord) = equal ? T(1) : T(0);
}
};
} // namespace detail
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Initializes a tensor randomly or procedurally.
template <typename View>
void TensorInitialize(View const &view,
unsigned seed,
Distribution const &dist) {
typedef typename View::Storage Scalar;
switch (dist.kind) {
case Distribution::Uniform:
{
typedef detail::RandomUniformFunc<View> Func;
typedef typename Func::Params Params;
TensorForEach<Func, View::kRank, Params>(
view.size(),
Params(view, seed, dist)
);
}
break;
case Distribution::Gaussian:
{
typedef detail::RandomGaussianFunc<View> Func;
typedef typename Func::Params Params;
TensorForEach<Func, View::kRank, Params>(
view.size(),
Params(view, seed, dist)
);
}
break;
case Distribution::Linear:
{
typedef detail::LinearCombinationFunc<View> Func;
TensorForEach<Func, View::kRank, Func>(
view.size(),
Func(view, dist));
}
break;
case Distribution::Identity:
{
typedef detail::IdentityFunc<View> Func;
Func func(view);
TensorForEach<Func, View::kRank, Func>(view.size(), func);
}
break;
default:
break;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Compares two tensor views of equal rank and dimension.
template <typename ViewL, typename ViewR>
struct TensorEqualsFunc {
/// Storage type
typedef typename ViewL::Storage T;
/// Unsigned integer type of same size as View type
typedef typename cutlass::TypeTraits<T>::unsigned_type UnsignedType;
/// Coordinate in tensor's index space
typedef typename ViewL::TensorCoord TensorCoord;
/// Assertions
static_assert(ViewL::kRank == ViewR::kRank,
"Cannot compare tensors of different rank");
//
// Data members
//
/// View of left-hand-side tensor
ViewL lhs;
/// View of right-hand-side tensor
ViewR rhs;
/// Pointer to result scalar - only written with 0 if values are incorrect
int *result;
//
// Methods
//
/// Constructor
TensorEqualsFunc(ViewL const &lhs, ViewR const &rhs, int *result): lhs(lhs), rhs(rhs), result(result) { }
/// Equality check
void operator()(TensorCoord const &coord) {
UnsignedType _lhs = reinterpret_cast<UnsignedType const &>(lhs.at(coord));
UnsignedType _rhs = reinterpret_cast<UnsignedType const &>(rhs.at(coord));
if (_lhs != _rhs) {
*result = 0;
}
}
};
} // namespace detail
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns true if two tensor views are equal.
template <typename ViewL, typename ViewR>
bool TensorEquals(ViewL const &lhs, ViewR const &rhs) {
// Sizes must be identical
if (lhs.size() != rhs.size()) {
return false;
}
int result = 1;
typedef detail::TensorEqualsFunc<ViewL, ViewR> Func;
Func func(lhs, rhs, &result);
TensorForEach<Func, ViewL::kRank, Func>(lhs.size(), func);
return result != 0;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to apply a binary operator in place
template <typename ViewL, typename ViewR, typename BinaryFunc>
struct TensorFuncBinaryOp {
/// Coordinate in tensor's index space
typedef typename ViewL::TensorCoord TensorCoord;
//
// Data members
//
/// View of left-hand-side tensor
ViewL lhs;
/// View of right-hand-side tensor
ViewR rhs;
/// Binary function applied to each element
BinaryFunc func;
//
// Methods
//
/// Constructor
TensorFuncBinaryOp(
ViewL const &lhs,
ViewR const &rhs,
BinaryFunc func = BinaryFunc()): lhs(lhs), rhs(rhs), func(func) { }
/// Equality check
void operator()(TensorCoord const &coord) {
lhs.at(coord) = func(lhs.at(coord), rhs.at(coord));
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace host
} // namespace reference
} // namespace cutlass