
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
159 lines
4.9 KiB
C++
159 lines
4.9 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
#pragma once
|
|
|
|
#include "cutlass/core_io.h"
|
|
#include "cutlass/tensor_view.h"
|
|
|
|
namespace cutlass {
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace detail {
|
|
|
|
/// Helper to write the least significant rank of a TensorView
|
|
template <
|
|
typename Storage_,
|
|
int Rank_,
|
|
typename MapFunc_,
|
|
int StorageRank_,
|
|
typename Index_,
|
|
typename LongIndex_
|
|
>
|
|
inline std::ostream & TensorView_WriteLeastSignificantRank(
|
|
std::ostream& out,
|
|
cutlass::TensorView<
|
|
Storage_,
|
|
Rank_,
|
|
MapFunc_,
|
|
StorageRank_,
|
|
Index_,
|
|
LongIndex_> const& tensor,
|
|
cutlass::Coord<Rank_> const &start_coord,
|
|
int rank,
|
|
std::streamsize width) {
|
|
|
|
for (int idx = 0; idx < tensor.size(rank); ++idx) {
|
|
|
|
Coord<Rank_> coord(start_coord);
|
|
coord[rank] = idx;
|
|
|
|
if (idx) {
|
|
out.width(0);
|
|
out << ", ";
|
|
}
|
|
if (idx || coord) {
|
|
out.width(width);
|
|
}
|
|
out << ScalarIO<Storage_>(tensor.at(coord));
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/// Helper to write a rank of a TensorView
|
|
template <
|
|
typename Storage_,
|
|
int Rank_,
|
|
typename MapFunc_,
|
|
int StorageRank_,
|
|
typename Index_,
|
|
typename LongIndex_
|
|
>
|
|
inline std::ostream & TensorView_WriteRank(
|
|
std::ostream& out,
|
|
cutlass::TensorView<
|
|
Storage_,
|
|
Rank_,
|
|
MapFunc_,
|
|
StorageRank_,
|
|
Index_,
|
|
LongIndex_> const& tensor,
|
|
cutlass::Coord<Rank_> const &start_coord,
|
|
int rank,
|
|
std::streamsize width) {
|
|
|
|
// If called on the least significant rank, write the result as a row
|
|
if (rank + 1 == Rank_) {
|
|
return TensorView_WriteLeastSignificantRank(out, tensor, start_coord, rank, width);
|
|
}
|
|
|
|
// Otherwise, write a sequence of rows and newlines
|
|
for (int idx = 0; idx < tensor.size(rank); ++idx) {
|
|
|
|
Coord<Rank_> coord(start_coord);
|
|
coord[rank] = idx;
|
|
|
|
if (rank + 2 == Rank_) {
|
|
// Write least significant ranks asa matrix with rows delimited by ";\n"
|
|
out << (idx ? ";\n" : "");
|
|
TensorView_WriteLeastSignificantRank(out, tensor, coord, rank + 1, width);
|
|
}
|
|
else {
|
|
// Higher ranks are separated by newlines
|
|
out << (idx ? "\n" : "");
|
|
TensorView_WriteRank(out, tensor, coord, rank + 1, width);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Prints human-readable representation of a TensorView to an ostream
|
|
template <
|
|
typename Storage_,
|
|
int Rank_,
|
|
typename MapFunc_,
|
|
int StorageRank_,
|
|
typename Index_,
|
|
typename LongIndex_
|
|
>
|
|
inline std::ostream& operator<<(
|
|
std::ostream& out,
|
|
TensorView<
|
|
Storage_,
|
|
Rank_,
|
|
MapFunc_,
|
|
StorageRank_,
|
|
Index_,
|
|
LongIndex_> const& tensor) {
|
|
|
|
// Prints a TensorView according to the following conventions:
|
|
// - least significant rank is printed as rows separated by ";\n"
|
|
// - all greater ranks are delimited with newlines
|
|
//
|
|
// The result is effectively a whitespace-delimited series of 2D matrices.
|
|
|
|
return detail::TensorView_WriteRank(out, tensor, Coord<Rank_>(), 0, out.width());
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace cutlass
|