 66d9cddc83
			
		
	
	
		66d9cddc83
		
			
		
	
	
	
	
		
			
			* New updates. * Minor profiler updates Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
		
			
				
	
	
		
			327 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /***************************************************************************************************
 | |
|  * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 | |
|  * SPDX-License-Identifier: BSD-3-Clause
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  * list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the copyright holder nor the names of its
 | |
|  * contributors may be used to endorse or promote products derived from
 | |
|  * this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  **************************************************************************************************/
 | |
| /*! \file
 | |
|     \brief Tests for device-wide GEMM interface
 | |
| */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| 
 | |
| #include "../../common/cutlass_unit_test.h"
 | |
| 
 | |
| #include "cutlass/util/distribution.h"
 | |
| #include "cutlass/util/reference/host/gemm_planar_complex.h"
 | |
| #include "cutlass/util/host_tensor_planar_complex.h"
 | |
| #include "cutlass/util/tensor_view_io.h"
 | |
| #include "cutlass/util/reference/host/tensor_compare.h"
 | |
| #include "cutlass/util/reference/host/tensor_copy.h"
 | |
| #include "cutlass/util/reference/host/tensor_fill.h"
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| namespace test {
 | |
| namespace gemm {
 | |
| namespace device {
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| template <typename Gemm>
 | |
| class TestbedPlanarComplex {
 | |
| public:
 | |
| 
 | |
|   using ElementA = typename Gemm::ElementA;
 | |
|   using LayoutA = typename Gemm::LayoutA;
 | |
|   using ElementB = typename Gemm::ElementB;
 | |
|   using LayoutB = typename Gemm::LayoutB;
 | |
|   using ElementC = typename Gemm::ElementC;
 | |
|   using LayoutC = typename Gemm::LayoutC;
 | |
|   using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
 | |
|   using ElementAccumulator = typename Gemm::ElementAccumulator;
 | |
| 
 | |
|   //
 | |
|   // Data members
 | |
|   //
 | |
| 
 | |
|   cutlass::gemm::GemmCoord problem_size;
 | |
|   cutlass::HostTensorPlanarComplex<ElementA, LayoutA> tensor_A;
 | |
|   cutlass::HostTensorPlanarComplex<ElementB, LayoutB> tensor_B;
 | |
|   cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_C;
 | |
|   cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_D;
 | |
|   cutlass::HostTensorPlanarComplex<ElementC, LayoutC> tensor_D_ref;
 | |
| 
 | |
|   //
 | |
|   // Methods
 | |
|   //
 | |
| 
 | |
|   TestbedPlanarComplex(cutlass::gemm::GemmCoord const & problem_size): problem_size(problem_size) {
 | |
| 
 | |
|     tensor_A.reset({problem_size.m(), problem_size.k()});
 | |
|     tensor_B.reset({problem_size.k(), problem_size.n()});
 | |
|     tensor_C.reset({problem_size.m(), problem_size.n()});
 | |
|     tensor_D.reset({problem_size.m(), problem_size.n()});
 | |
|     tensor_D_ref.reset({problem_size.m(), problem_size.n()}, false);
 | |
|   }
 | |
| 
 | |
|   void initialize() {
 | |
| 
 | |
|     uint64_t seed = 1073;
 | |
| 
 | |
|     int scope_max = 8;
 | |
|     int scope_min = -8;
 | |
| 
 | |
|     cutlass::reference::host::TensorFillRandomUniform(
 | |
|         tensor_A.host_view(), seed, scope_max, scope_min, 0);
 | |
| 
 | |
|     cutlass::reference::host::TensorFillRandomUniform(
 | |
|         tensor_B.host_view(), seed * 2019, scope_max, scope_min, 0);
 | |
| 
 | |
|     cutlass::reference::host::TensorFillRandomUniform(
 | |
|         tensor_C.host_view(), seed * 2020, scope_max, scope_min, 0);
 | |
| 
 | |
|     cutlass::reference::host::TensorFill(tensor_D.host_view(), cutlass::complex<ElementC>());
 | |
|     cutlass::reference::host::TensorFill(tensor_D_ref.host_view(), cutlass::complex<ElementC>());
 | |
| 
 | |
|     tensor_A.sync_device();
 | |
|     tensor_B.sync_device();
 | |
|     tensor_C.sync_device();
 | |
|     tensor_D.sync_device();
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the CUDA device is sufficient to execute the kernel.
 | |
|   bool sufficient() const {
 | |
|     //
 | |
|     // Determine SMEM requirements and waive if not satisfied
 | |
|     //
 | |
| 
 | |
|     int smem_size = int(sizeof(typename Gemm::GemmKernel::SharedStorage));
 | |
| 
 | |
|     cudaDeviceProp properties;
 | |
|     int device_idx;
 | |
|     cudaError_t result = cudaGetDevice(&device_idx);
 | |
| 
 | |
|     if (result != cudaSuccess) {
 | |
|       throw std::runtime_error("cudaGetDevice() API call failed.");
 | |
|     }
 | |
| 
 | |
|     result = cudaGetDeviceProperties(&properties, device_idx);
 | |
| 
 | |
|     if (result != cudaSuccess) {
 | |
|       throw std::runtime_error("cudaGetDeviceProperties() failed");
 | |
|     }
 | |
| 
 | |
|     if (properties.sharedMemPerBlockOptin < smem_size) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   bool run(
 | |
|       cutlass::complex<ElementCompute> alpha = {1, 0},
 | |
|       cutlass::complex<ElementCompute> beta = {0, 0}) {
 | |
| 
 | |
|     // Waive test if insufficient CUDA device
 | |
|     if (!sufficient()) {
 | |
|       if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
 | |
|         std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     initialize();
 | |
| 
 | |
|     int batch_count = 1;
 | |
| 
 | |
|     ElementA *ptr_A = tensor_A.device_data();
 | |
|     ElementB *ptr_B = tensor_B.device_data();
 | |
|     ElementC *ptr_C = tensor_C.device_data();
 | |
|     ElementC *ptr_D = tensor_D.device_data();
 | |
| 
 | |
|     typename LayoutA::Stride::Index lda = tensor_A.layout().stride(0);
 | |
|     typename LayoutB::Stride::Index ldb = tensor_B.layout().stride(0);
 | |
|     typename LayoutC::Stride::Index ldc = tensor_C.layout().stride(0);
 | |
|     typename LayoutC::Stride::Index ldd = tensor_D.layout().stride(0);
 | |
| 
 | |
|     int64_t imag_stride_A = tensor_A.imaginary_stride();
 | |
|     int64_t imag_stride_B = tensor_B.imaginary_stride();
 | |
|     int64_t imag_stride_C = tensor_C.imaginary_stride();
 | |
|     int64_t imag_stride_D = tensor_D.imaginary_stride();
 | |
| 
 | |
|     //
 | |
|     // Launch device kernel
 | |
|     //
 | |
| 
 | |
|     Gemm gemm_op;
 | |
| 
 | |
|     typename Gemm::Arguments args{
 | |
|       cutlass::gemm::GemmUniversalMode::kGemm,
 | |
|       problem_size,
 | |
|       batch_count,
 | |
|       {alpha, beta},
 | |
|       ptr_A,
 | |
|       ptr_A + imag_stride_A,
 | |
|       ptr_B,
 | |
|       ptr_B + imag_stride_B,
 | |
|       ptr_C,
 | |
|       ptr_C + imag_stride_C,
 | |
|       ptr_D,
 | |
|       ptr_D + imag_stride_D,
 | |
|       lda,
 | |
|       lda,
 | |
|       ldb,
 | |
|       ldb,
 | |
|       ldc,
 | |
|       ldc,
 | |
|       ldd,
 | |
|       ldd
 | |
|     };
 | |
| 
 | |
|     cutlass::Status status = gemm_op(args);
 | |
| 
 | |
|     EXPECT_EQ(status, cutlass::Status::kSuccess);
 | |
| 
 | |
|     cudaError_t error = cudaDeviceSynchronize();
 | |
| 
 | |
|     tensor_D.sync_host();
 | |
| 
 | |
|     //
 | |
|     // Compute reference
 | |
|     //
 | |
| 
 | |
|     cutlass::reference::host::GemmPlanarComplex<
 | |
|       ElementA, LayoutA,
 | |
|       ElementB, LayoutB,
 | |
|       ElementC, LayoutC,
 | |
|       ElementAccumulator
 | |
|     >(
 | |
|       problem_size,
 | |
|       alpha,
 | |
|       tensor_A.host_ref(),
 | |
|       Gemm::kTransformA,
 | |
|       tensor_B.host_ref(),
 | |
|       Gemm::kTransformB,
 | |
|       beta,
 | |
|       tensor_C.host_ref(),
 | |
|       tensor_D_ref.host_ref()
 | |
|     );
 | |
|     
 | |
|     bool passed = cutlass::reference::host::TensorEquals(
 | |
|       tensor_D.host_view(), 
 | |
|       tensor_D_ref.host_view()
 | |
|     );
 | |
| 
 | |
|     EXPECT_TRUE(passed);
 | |
| 
 | |
|     if (!passed) {
 | |
|       std::ofstream output("gemm_planar_complex.txt");
 | |
| 
 | |
|       output
 | |
|         << "A:\n" << tensor_A.host_view() << "\n"
 | |
|         << "B:\n" << tensor_B.host_view() << "\n"
 | |
|         << "C:\n" << tensor_C.host_view() << "\n"
 | |
|         << "Reference:\n"
 | |
|         << tensor_D_ref.host_view() << "\n"
 | |
|         << "Computed:\n"
 | |
|         << tensor_D.host_view() << "\n";
 | |
|     }
 | |
| 
 | |
|     return passed;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Gemm>
 | |
| bool TestOneGemmPlanarComplex(cutlass::gemm::GemmCoord problem_size) {
 | |
| 
 | |
|   TestbedPlanarComplex<Gemm> testbed(problem_size);
 | |
| 
 | |
|   return testbed.run();
 | |
| }
 | |
| 
 | |
| template <typename Gemm>
 | |
| bool TestAllGemmPlanarComplex() {
 | |
| 
 | |
|   int M[] = {
 | |
|     16, 64, 72, 144, 264, 520,
 | |
|   };
 | |
| 
 | |
|   int N[] = {
 | |
|     16, 64, 72, 144, 248, 264, 520
 | |
|   };
 | |
| 
 | |
|   int K[] = {
 | |
|     8, 64, 72, 96,  264, 520
 | |
|   };
 | |
| 
 | |
|   using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute;
 | |
| 
 | |
|   cutlass::complex<ElementCompute> alpha_values[] = {
 | |
|     {ElementCompute(1.25), ElementCompute(-0.5)}
 | |
|   };
 | |
| 
 | |
|   cutlass::complex<ElementCompute> beta_values[] = {
 | |
|     {ElementCompute(-2.25), ElementCompute(1.5)}
 | |
|   };
 | |
| 
 | |
|   for (int m : M) {
 | |
|     for (int n : N) {
 | |
|       for (int k : K) {
 | |
|         
 | |
|         test::gemm::device::TestbedPlanarComplex<Gemm> testbed({m, n, k});
 | |
| 
 | |
|         for (auto const &alpha : alpha_values) {
 | |
|           for (auto const &beta : beta_values) {
 | |
| 
 | |
|             bool passed = testbed.run(alpha, beta);
 | |
|             if (!passed) {
 | |
|               return false;
 | |
|             }            
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| } // namespace device
 | |
| } // namespace gemm
 | |
| } // namespace test
 | |
| 
 | |
| /////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 |