cutlass/tools/profiler/src/rank_2k_operation_profiler.cu
ANIKET SHIVAM d572cc1aab
CUTLASS 3.1 (#915)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-04-14 23:19:34 -04:00

733 lines
24 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Execution environment
*/
#include <iostream>
#include <stdexcept>
#include <iomanip>
#include <ios>
#include "cutlass/core_io.h"
#include "cublas_helpers.h"
#include "rank_2k_operation_profiler.h"
#include "gpu_timer.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Ctor
Rank2KOperationProfiler::Rank2KOperationProfiler(Options const &options):
OperationProfiler(
options,
library::OperationKind::kRank2K,
{
{ArgumentTypeID::kEnumerated, {"rank_k_kind"}, "Variant of RankK (universal)"},
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the RankK problem space"},
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the RankK problem space"},
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
{ArgumentTypeID::kEnumerated, {"fill_mode"}, "Fill Mode for RankK kernel (lower or upper)"},
{ArgumentTypeID::kEnumerated, {"blas_mode"}, "Blas Mode for RankK kernel (symmetric or hermitian)"},
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of RankK computed in one batch"},
},
{ library::Provider::kCUBLAS}
) {
description_ = " Rank 2k Update. D = alpha * (A*B^T + B*A^T) + beta * C (symmetric) or D = alpha * (A*B^H+B*A^H) + beta * C (hermitian)";
}
/// Destructor
Rank2KOperationProfiler::~Rank2KOperationProfiler() {
}
/// Prints usage statement for the math function
void Rank2KOperationProfiler::print_usage(std::ostream &out) const {
out << "RankK" << "\n\n";
OperationProfiler::print_usage(out);
}
/// Prints examples
void Rank2KOperationProfiler::print_examples(std::ostream &out) const {
out << "\nExamples:\n\n"
<< "Profile a particular problem size Syrk kernel:\n"
<< " $ cutlass_profiler --operation=rank_2k --blas_mode=symmetric --n=1024 --k=128\n\n"
<< "Profile a particular problem size Herk kernel:\n"
<< " $ cutlass_profiler --operation=rank_2k --blas_mode=hermitian --n=1024 --k=128\n\n"
<< "Schmoo over problem size and beta:\n"
<< " $ cutlass_profiler --operation=rank_2k --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
<< "Schmoo over accumulator types:\n"
<< " $ cutlass_profiler --operation=rank_2k --accumulator-type=f16,f32\n\n"
<< "Schmoo over fill modees:\n"
<< " $ cutlass_profiler --operation=rank_2k --fill_mode=lower/upper\n\n"
<< "Run when A is f16 with column-major or A is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
<< " $ cutlass_profiler --operation=rank_2k --A=f16:column or --A=*:row\n\n"
<< "Using various input value distribution:\n"
<< " $ cutlass_profiler --operation=rank_2k --dist=uniform,min:0,max:3\n"
<< " $ cutlass_profiler --operation=rank_2k --dist=gaussian,mean:0,stddev:3\n"
<< " $ cutlass_profiler --operation=rank_2k --dist=sequential,start:0,delta:1\n\n"
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
<< " $ cutlass_profiler --operation=rank_2k --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
<< "Test your changes to rank_2k kernels with a quick functional test and save results in functional-test.csv:\n"
<< " $ cutlass_profiler --operation=rank_2k \\ \n"
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
<< " --providers=cutlass --output=functional-test.csv\n\n";
}
/////////////////////////////////////////////////////////////////////////////////////////////////
#if 0
// used this for debugging
static std::string byte_string(std::vector<uint8_t> const &bytes) {
std::stringstream ss;
ss << "0x";
for (size_t idx = bytes.size(); idx > 0; --idx) {
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
}
return ss.str();
}
#endif
Status Rank2KOperationProfiler::RankKProblem::parse(
library::RankKDescription const &operation_desc,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
if (!arg_as_int(this->n, "n", problem_space, problem)) {
// default value
this->n = 1024;
}
if (!arg_as_int(this->k, "k", problem_space, problem)) {
// default value
this->k = 1024;
}
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
// default value
this->split_k_slices = 1;
}
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
// default value
this->batch_count = 1;
}
if (this->split_k_slices > 1 && this->batch_count > 1) {
// At least one of these must be one
return Status::kErrorInvalidProblem;
}
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
return Status::kErrorInvalidProblem;
}
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
return Status::kErrorInvalidProblem;
}
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
return Status::kErrorInvalidProblem;
}
if (!arg_as_scalar(
this->alpha,
operation_desc.element_epilogue,
"alpha",
problem_space,
problem)) {
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
return Status::kErrorInternal;
}
}
if (!arg_as_scalar(
this->beta,
operation_desc.element_epilogue,
"beta",
problem_space,
problem)) {
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
return Status::kErrorInternal;
}
}
this->lda = DeviceAllocation::get_packed_layout(
operation_desc.A.layout, {int(this->n), int(this->k)}).front();
this->ldb = DeviceAllocation::get_packed_layout(
operation_desc.B.layout, {int(this->n), int(this->k)}).front();
this->ldc = DeviceAllocation::get_packed_layout(
operation_desc.C.layout, {int(this->n), int(this->n)}).front();
return Status::kSuccess;
}
/// Total number of bytes loaded
int64_t Rank2KOperationProfiler::RankKProblem::bytes(library::RankKDescription const &operation_desc) const {
// Input bytes read and Output bytes written for the gemm problem
int64_t bytes =
2 * int64_t(library::sizeof_bits(operation_desc.A.element) * n / 8) * k +
2 * int64_t(library::sizeof_bits(operation_desc.B.element) * n / 8) * k +
// Half matrix including the diagonal will have (N*(N+1))/2 elements
int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
// Set is_beta_zero true if beta is zero
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
// Output bytes read for the gemm problem for non-zero beta values
if (!is_beta_zero) {
bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
}
bytes *= batch_count;
return bytes;
}
/// Total number of flops computed
int64_t Rank2KOperationProfiler::RankKProblem::flops(library::RankKDescription const &operation_desc) const {
// FLOPs = 2 * n(n+1)k/2 [mma1] + 2 * n(n+1)k/2 [mma2] + 2 * n(n+1)/2 [epilogue]
// FLOPs = n(n+1)(2k + 1)
int64_t flops_ = n * (n + 1) * (2*k + 1);
// complex-valued support
switch (operation_desc.tile_description.math_instruction.math_operation) {
case library::MathOperationID::kMultiplyAddComplex:
flops_ *= 4;
break;
case library::MathOperationID::kMultiplyAddComplexFastF32:
flops_ *= 4;
break;
case library::MathOperationID::kMultiplyAddGaussianComplex:
flops_ *= 3;
break;
default: break;
}
return flops_;
}
/// Initializes a performance result
void Rank2KOperationProfiler::RankKProblem::initialize_result(
PerformanceResult &result,
library::RankKDescription const &operation_desc,
ProblemSpace const &problem_space) {
result.arguments.resize(problem_space.rank());
set_argument(result, "rank_k_kind", problem_space, library::to_string(operation_desc.rank_k_kind));
set_argument(result, "A", problem_space,
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
set_argument(result, "B", problem_space,
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
set_argument(result, "C", problem_space,
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
set_argument(result, "fill_mode", problem_space, library::to_string(operation_desc.fill_mode));
set_argument(result, "blas_mode", problem_space, library::to_string(operation_desc.blas_mode));
set_argument(result, "n", problem_space, n);
set_argument(result, "k", problem_space, k);
set_argument(result, "split_k_slices", problem_space, split_k_slices);
set_argument(result, "batch_count", problem_space, batch_count);
set_argument(result, "alpha", problem_space,
library::lexical_cast(alpha, operation_desc.element_epilogue));
set_argument(result, "beta", problem_space,
library::lexical_cast(beta, operation_desc.element_epilogue));
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Extracts the problem dimensions
Status Rank2KOperationProfiler::initialize_configuration(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
library::RankKDescription const &operation_desc =
static_cast<library::RankKDescription const &>(operation->description());
if (operation_desc.rank_k_kind != library::RankKKind::kUniversal) {
return Status::kErrorInvalidProblem;
}
Status status = problem_.parse(operation_desc, problem_space, problem);
if (status != Status::kSuccess) {
return status;
}
rank_k_workspace_.configuration.problem_size.m() = int(problem_.n);
rank_k_workspace_.configuration.problem_size.n() = int(problem_.n);
rank_k_workspace_.configuration.problem_size.k() = int(problem_.k);
rank_k_workspace_.configuration.lda = problem_.lda;
rank_k_workspace_.configuration.ldb = problem_.ldb;
rank_k_workspace_.configuration.ldc = problem_.ldc;
rank_k_workspace_.configuration.ldd = problem_.ldc;
//rank_k_workspace_.configuration.split_k_slices = int(problem_.split_k_slices);
rank_k_workspace_.configuration.batch_count = int(problem_.split_k_slices);
rank_k_workspace_.arguments.A = nullptr;
rank_k_workspace_.arguments.B = nullptr;
rank_k_workspace_.arguments.C = nullptr;
rank_k_workspace_.arguments.D = nullptr;
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
rank_k_workspace_.arguments.beta = problem_.beta.data();
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
initialize_result_(this->model_result_, options, operation_desc, problem_space);
return operation->can_implement(&rank_k_workspace_.configuration, &rank_k_workspace_.arguments);
}
/// Initializes the performance result
void Rank2KOperationProfiler::initialize_result_(
PerformanceResult &result,
Options const &options,
library::RankKDescription const &operation_desc,
ProblemSpace const &problem_space) {
result.provider = library::Provider::kCUTLASS;
result.disposition = Disposition::kNotRun;
result.status = Status::kSuccess;
result.operation_name = operation_desc.name;
problem_.initialize_result(result, operation_desc, problem_space);
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
result.bytes = problem_.bytes(operation_desc);
result.flops = problem_.flops(operation_desc);
result.runtime = 0;
}
/// Initializes workspace
Status Rank2KOperationProfiler::initialize_workspace(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
library::RankKDescription const &operation_desc =
static_cast<library::RankKDescription const &>(operation->description());
if (options.execution_mode != ExecutionMode::kDryRun) {
int seed_shift = 0;
rank_k_workspace_.A = device_context.allocate_tensor(
options,
"A",
operation_desc.A.element,
operation_desc.A.layout,
{int(problem_.n), int(problem_.k)},
{int(problem_.lda)},
1, // batch_count
seed_shift++
);
rank_k_workspace_.B = device_context.allocate_tensor(
options,
"B",
operation_desc.B.element,
operation_desc.B.layout,
{int(problem_.n), int(problem_.k)},
{int(problem_.ldb)},
1, // batch_count
seed_shift++
);
rank_k_workspace_.C = device_context.allocate_tensor(
options,
"C",
operation_desc.C.element,
operation_desc.C.layout,
{int(problem_.n), int(problem_.n)},
{int(problem_.ldc)},
1, // batch_count
seed_shift++
);
rank_k_workspace_.Computed = device_context.allocate_tensor(
"D",
operation_desc.C.element,
operation_desc.C.layout,
{int(problem_.n), int(problem_.n)},
{int(problem_.ldc)}
);
rank_k_workspace_.Reference = device_context.allocate_tensor(
"Reference",
operation_desc.C.element,
operation_desc.C.layout,
{int(problem_.n), int(problem_.n)},
{int(problem_.ldc)}
);
rank_k_workspace_.Computed->copy_from_device(rank_k_workspace_.C->data());
rank_k_workspace_.Reference->copy_from_device(rank_k_workspace_.C->data());
}
//
// Initialize the CUTLASS operation
//
Status status = Status::kSuccess;
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
if (options.execution_mode != ExecutionMode::kDryRun) {
uint64_t workspace_size = operation->get_host_workspace_size(&rank_k_workspace_.configuration);
rank_k_workspace_.host_workspace.resize(workspace_size, 0);
workspace_size = operation->get_device_workspace_size(&rank_k_workspace_.configuration);
rank_k_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
status = operation->initialize(
&rank_k_workspace_.configuration,
rank_k_workspace_.host_workspace.data(),
rank_k_workspace_.device_workspace.data());
}
//
// If CUTLASS is enabled, generate a result for it
//
results_.push_back(model_result_);
results_.back().provider = library::Provider::kCUTLASS;
results_.back().op_kind = library::OperationKind::kRank2K;
results_.back().disposition = Disposition::kNotRun;
for(auto provider : verification_providers_) {
results_.back().verification_map[provider] = Disposition::kNotRun;
}
}
return status;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Verifies CUTLASS against references
bool Rank2KOperationProfiler::verify_cutlass(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
return true;
}
if (options.execution_mode == ExecutionMode::kDryRun) {
return true;
}
// Initialize structure containing RankK arguments
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
rank_k_workspace_.arguments.beta = problem_.beta.data();
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
//
// Run the CUTLASS operation
//
results_.back().status = operation->run(
&rank_k_workspace_.arguments,
rank_k_workspace_.host_workspace.data(),
rank_k_workspace_.device_workspace.data());
if (results_.back().status != Status::kSuccess) {
results_.back().disposition = Disposition::kFailed;
return false;
}
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
results_.back().disposition = Disposition::kFailed;
return false;
}
// CUTLASS op ran the but not yet verified against any verification provider
results_.back().disposition = Disposition::kNotVerified;
//
// Run verification providers
//
if (options.verification.enabled) {
#if CUTLASS_ENABLE_CUBLAS
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
// Guard against unsupported cases
auto const & rank_k_desc = static_cast<library::RankKDescription const &>(operation->description());
if (cublas_satisfies(rank_k_desc) == Status::kSuccess) {
// call cublas verification if supported
verify_with_cublas_(
options,
report,
device_context,
operation,
problem_space,
problem);
}
else {
// set verification map for cublas to not supported
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
}
}
#endif // #if CUTLASS_ENABLE_CUBLAS
// Update disposition to worst case verification outcome among all
// verification providers which are supported
bool is_any_verification_run_passed = false;
for(auto &m : results_.back().verification_map) {
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
results_.back().disposition = m.second;
return true;
}
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
is_any_verification_run_passed = true;
}
}
if(is_any_verification_run_passed) {
results_.back().disposition = Disposition::kPassed;
}
}
// Return true means continue profiling
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Verifies CUTLASS against references
bool Rank2KOperationProfiler::verify_with_cublas_(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
#if CUTLASS_ENABLE_CUBLAS
library::RankKDescription const &rank_k_desc =
static_cast<library::RankKDescription const &>(operation->description());
//
// Construct cuBLAS operators
//
CublasCreate handle;
cublasStatus_t status = handle.get_cublas_create_status();
if (status != CUBLAS_STATUS_SUCCESS) {
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
return true;
}
//
// Initialize state
//
try {
//
// Construct dispatcher to cublas<t>Syr2k()
//
// Initialize structure containing RankK arguments
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
rank_k_workspace_.arguments.C = rank_k_workspace_.Reference->data();
rank_k_workspace_.arguments.D = rank_k_workspace_.Reference->data();
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
rank_k_workspace_.arguments.beta = problem_.beta.data();
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
detail::cublasRankKDispatcher rank_k_op(
rank_k_desc,
rank_k_workspace_.configuration,
rank_k_workspace_.arguments
);
if (rank_k_op.status != Status::kSuccess) {
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
return true;
}
results_.back().status = Status::kSuccess;
status = rank_k_op(handle);
// Handle errors
if (status != CUBLAS_STATUS_SUCCESS) {
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
return true;
}
//
// Verify results
//
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
options,
*rank_k_workspace_.Computed,
*rank_k_workspace_.Reference
);
// Save workspace if incorrect
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
save_workspace(
device_context,
options,
rank_k_desc,
library::Provider::kCUTLASS,
library::Provider::kCUBLAS);
}
}
catch (...) {
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
}
#endif
// Return true means continue profiling
return true;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Measures performance results
bool Rank2KOperationProfiler::profile(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem) {
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
// Initialize structure containing RankK arguments
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
rank_k_workspace_.arguments.beta = problem_.beta.data();
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
results_.back().status = profile_cutlass_(
results_.back().runtime,
options,
operation,
&rank_k_workspace_.arguments,
rank_k_workspace_.host_workspace.data(),
rank_k_workspace_.device_workspace.data()
);
}
return true;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace profiler
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////