cutlass/include/cutlass/layout/tensor_op_multiplicand_sm80.h
ANIKET SHIVAM 66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00

1140 lines
29 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief layouts needed by Ampere fp64 tensor core kernels.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/layout/pitch_linear.h"
#include "cutlass/layout/tensor_op_multiplicand_sm75.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace layout {
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct TensorOpMultiplicandCongruous64b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = PitchLinearCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Static constants
//
static int const kElementSize = 64;
static int const kElementsPerAccess = 1;
private:
//
// Data members
//
/// Stride data member.
Stride stride_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCongruous64b(Index ldm = 0) : stride_(ldm) {}
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCongruous64b(Stride stride) : stride_(stride) {}
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) {
return TensorOpMultiplicandCongruous64b(extent[0]);
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
int tc = coord.contiguous() / 16;
int ts = coord.strided() / 4;
int c = coord.contiguous() % 16;
int s = coord.strided() % 4;
int bank = ((((c & 1) * 4 + (c & 6) / 2)) ^ (s & 1)) * 2 + (c / 8);
int row = (c & 6) / 2;
bank ^= ((s & 2) * 2);
LongIndex offset = tc * 16 + bank + (ts * 4 + row) * stride_[0];
return offset;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const { return stride_; }
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride &stride() { return stride_; }
/// Compute the number of contiguous elements needed to store a tensor with
/// the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent[1] * stride_[0];
}
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
return TensorCoord();
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a column-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct ColumnMajorTensorOpMultiplicandCongruous64b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCongruous64b;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCongruous64b(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCongruous64b(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static ColumnMajorTensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) {
return ColumnMajorTensorOpMultiplicandCongruous64b(extent.row());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.row(), coord.column()));
}
/// Inverse of layout function, mapping linear offset to logical coordinate
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
PitchLinearCoord coord = layout_.inverse(offset);
return MatrixCoord(coord.contiguous(), coord.strided());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.row(), extent.column()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a row-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct RowMajorTensorOpMultiplicandCongruous64b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCongruous64b;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCongruous64b(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCongruous64b(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static RowMajorTensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) {
return RowMajorTensorOpMultiplicandCongruous64b(extent.column());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.column(), coord.row()));
}
/// Inverse of layout function, mapping linear offset to logical coordinate
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
PitchLinearCoord coord = layout_.inverse(offset);
return MatrixCoord(coord.strided(), coord.contiguous());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.column(), extent.row()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct TensorOpMultiplicand64bCrosswise {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = PitchLinearCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Static constants
//
static int const kElementSize = 64;
static int const kElementsPerAccess = 1;
private:
//
// Data members
//
/// Stride data member.
Stride stride_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicand64bCrosswise(Index ldm = 0) : stride_(ldm) {}
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicand64bCrosswise(Stride stride) : stride_(stride) {}
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) {
return TensorOpMultiplicand64bCrosswise(extent[0]);
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
int tc = coord.contiguous() / 16;
int ts = coord.strided() / 16;
int c = coord.contiguous() % 16;
int s = coord.strided() % 16;
int k_group = c / 4;
int access_s = s / 2;
int row = access_s % 4;
int bank = ((k_group & 2) << 2) ^ ((s % 2) << 3) + (c % 4) * 2 + (access_s / 4) ^ (k_group & 1);
int smem_row = (k_group * 4 + row) + tc * 16;
int smem_col = ts * 16 + bank;
LongIndex offset = smem_row * stride_[0] + smem_col;
return offset;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const { return stride_; }
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride &stride() { return stride_; }
/// Compute the number of contiguous elements needed to store a tensor with
/// the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent[1] * stride_[0];
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct ColumnMajorTensorOpMultiplicand64bCrosswise {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicand64bCrosswise;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicand64bCrosswise(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicand64bCrosswise(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static ColumnMajorTensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) {
return ColumnMajorTensorOpMultiplicand64bCrosswise(extent.column());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.row(), coord.column()));
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.row(), extent.column()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct RowMajorTensorOpMultiplicand64bCrosswise {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicand64bCrosswise;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicand64bCrosswise(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicand64bCrosswise(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static RowMajorTensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) {
return RowMajorTensorOpMultiplicand64bCrosswise(extent.row());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.column(), coord.row()));
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.column(), extent.row()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct TensorOpMultiplicandCongruous128b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = PitchLinearCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Static constants
//
static int const kElementSize = 128;
static int const kElementsPerAccess = 1;
private:
//
// Data members
//
/// Stride data member.
Stride stride_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCongruous128b(Index ldm = 0) : stride_(ldm) {}
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCongruous128b(Stride stride) : stride_(stride) {}
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) {
return TensorOpMultiplicandCongruous128b(extent[0]);
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
Index tc = coord.contiguous() / 8;
Index ts = coord.strided() / 4;
Index c = coord.contiguous() % 8;
Index s = coord.strided() % 4;
Index k_index = (c / 2);
Index bank = (((c & 1) * 4) | (s ^ k_index));
LongIndex offset = tc * 8 + bank + (ts * 4 + k_index) * stride_[0];
return offset;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const { return stride_; }
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride &stride() { return stride_; }
/// Compute the number of contiguous elements needed to store a tensor with
/// the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent[1] * stride_[0];
}
/// Inverse of layout function, mapping linear offset to logical coordinate
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
return TensorCoord();
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a column-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct ColumnMajorTensorOpMultiplicandCongruous128b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCongruous128b;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCongruous128b(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCongruous128b(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static ColumnMajorTensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) {
return ColumnMajorTensorOpMultiplicandCongruous128b(extent.row());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.row(), coord.column()));
}
/// Inverse of layout function, mapping linear offset to logical coordinate
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
PitchLinearCoord coord = layout_.inverse(offset);
return MatrixCoord(coord.contiguous(), coord.strided());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.row(), extent.column()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a row-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct RowMajorTensorOpMultiplicandCongruous128b {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCongruous128b;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCongruous128b(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCongruous128b(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static RowMajorTensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) {
return RowMajorTensorOpMultiplicandCongruous128b(extent.column());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.column(), coord.row()));
}
/// Inverse of layout function, mapping linear offset to logical coordinate
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex offset) const {
PitchLinearCoord coord = layout_.inverse(offset);
return MatrixCoord(coord.strided(), coord.contiguous());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.column(), extent.row()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template based on element size (in bits) - defined in terms of pitch-linear
/// memory and Crosswise size (in elements).
struct TensorOpMultiplicandCrosswise128x4 {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = PitchLinearCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Static constants
//
static int const kElementSize = 128;
static int const kElementsPerAccess = 1;
private:
//
// Data members
//
/// Stride data member.
Stride stride_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCrosswise128x4(Index ldm = 0) : stride_(ldm) {}
/// Ctor
CUTLASS_HOST_DEVICE
TensorOpMultiplicandCrosswise128x4(Stride stride) : stride_(stride) {}
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) {
return TensorOpMultiplicandCrosswise128x4(extent[0]);
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
Index tc = coord.contiguous() / 8;
Index ts = coord.strided() / 8;
Index c = coord.contiguous() % 8;
Index s = coord.strided() % 8;
Index liq = c % 4;
Index bank = liq + ((s & 1) * 4) ^ (c & 4);
Index k_index = (c & 4) + (s / 4) * 2 + ((s & 2) / 2);
LongIndex offset = (tc * 8 + k_index) * stride_[0] + ts * 8 + bank;
return offset;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const { return stride_; }
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride &stride() { return stride_; }
/// Compute the number of contiguous elements needed to store a tensor with
/// the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent[1] * stride_[0];
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a column-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct ColumnMajorTensorOpMultiplicandCrosswise128x4 {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCrosswise128x4;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCrosswise128x4(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
ColumnMajorTensorOpMultiplicandCrosswise128x4(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static ColumnMajorTensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) {
return ColumnMajorTensorOpMultiplicandCrosswise128x4(extent.column());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.row(), coord.column()));
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.row(), extent.column()));
}
};
////////////////////////////////////////////////////////////////////////////////
/// Template mapping a row-major view of pitch-linear memory to
/// TensorOpMultiplicand
struct RowMajorTensorOpMultiplicandCrosswise128x4 {
/// Logical rank of tensor
static int const kRank = 2;
/// Rank of stride vector
static int const kStrideRank = 1;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = MatrixCoord;
/// Stride vector
using Stride = Coord<kStrideRank, Index, LongIndex>;
//
// Invariants
//
using Base = TensorOpMultiplicandCrosswise128x4;
private:
//
// Data members
//
Base layout_;
public:
//
// Methods
//
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCrosswise128x4(Index ldm = 0): layout_(ldm) { }
/// Ctor
CUTLASS_HOST_DEVICE
RowMajorTensorOpMultiplicandCrosswise128x4(Stride stride): layout_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static RowMajorTensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) {
return RowMajorTensorOpMultiplicandCrosswise128x4(extent.row());
}
/// Returns the offset of a coordinate in linear memory.
/// Assumes coordinate has convention (contiguous, strided)
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return layout_(PitchLinearCoord(coord.column(), coord.row()));
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return layout_.stride();
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return layout_.stride();
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return layout_.capacity(PitchLinearCoord(extent.column(), extent.row()));
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace layout
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////