cutlass/test/unit/conv/device/deconv3d_with_broadcast_simt_sm80.cu
Vijay Thakkar be60a0b272
CUTLASS 3.5.1 (#1623)
* CUTLASS 3.5.1

* updates, optimizations, fixes
2024-07-29 08:46:24 -04:00

173 lines
6.8 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide Implicit GEMM interface
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/conv/kernel/default_deconv3d_with_broadcast.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "conv3d_with_broadcast_testbed.h"
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
TEST(SM80_Device_Deconv3d_With_Broadcast_Optimized_ImplicitGemm_f32ndhwc_f32ndhwc_f32ndhwc_simt_f32,
128x128_32x2_64x64x32) {
/// Conv operation element types for the Gemm equivalent (ImplicitGemm)
using ElementA = float;
using ElementB = float;
using ElementC = float;
using ElementCompute = float;
using ElementAccumulator = float;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationBiasElementwise<
ElementC,
ElementAccumulator,
ElementCompute,
ElementC,
ElementC,
1,
cutlass::epilogue::thread::ReLu<float>
>;
/// Device-level Conv3d instance
using Deconv3dKernel = typename cutlass::conv::kernel::DefaultDeconv3dWithBroadcast<
ElementA, cutlass::layout::TensorNDHWC,
ElementB, cutlass::layout::TensorNDHWC,
ElementC, cutlass::layout::TensorNDHWC,
ElementAccumulator,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>,
EpilogueOutputOp,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized,
cutlass::conv::StrideSupport::kUnity
>::Kernel;
using Deconv3d = cutlass::conv::device::ImplicitGemmConvolution<Deconv3dKernel>;
/// Run all unit test sizes with device-level Conv3d instance
EXPECT_TRUE(test::conv::device::TestAllConv3dWithBroadcast<Deconv3d>());
}
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv3d(X) + bias), residual))
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
// This is because the activation needs to be applied to the fully accumulated output of the Conv3d op,
// which only the last thread block would have an access to, before applying BinaryOp.
// The epilogue functor in the last thread block would have to be given three inputs, namely
// partial outputs, bias, and residual, but this is not supported in the current interface.
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
template <
template<typename T> class ActivationOp,
template<typename T> class BinaryOp,
template<typename T> class UnaryOp,
bool TestSplitK = true
>
static void Deconv3dSM80TestResidualBlock() {
using ElementA = float;
using ElementB = float;
using ElementC = float;
using ElementD = ElementC;
using ElementCompute = float;
using ElementAccumulator = float;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
ElementD,
ElementAccumulator,
ElementCompute,
ElementC,
1,
ActivationOp,
BinaryOp,
UnaryOp
>;
using Deconv3dKernel = typename cutlass::conv::kernel::DefaultDeconv3dWithBroadcast<
ElementA, cutlass::layout::TensorNDHWC,
ElementB, cutlass::layout::TensorNDHWC,
ElementC, cutlass::layout::TensorNDHWC,
ElementAccumulator,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>,
EpilogueOutputOp,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized,
cutlass::conv::StrideSupport::kUnity
>::Kernel;
using Deconv3d = cutlass::conv::device::ImplicitGemmConvolution<Deconv3dKernel>;
struct ReferenceOp {
using OutputOp = typename Deconv3d::EpilogueOutputOp;
using ElementZ = typename OutputOp::ElementZ;
ActivationOp<ElementCompute> activation;
BinaryOp<ElementCompute> binary_op;
UnaryOp<ElementCompute> unary_op;
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv3d, ElementCompute residual) {
Z = ElementZ(unary_op(binary_op(activation(conv3d), residual)));
}
};
bool passed = test::conv::device::TestAllConv3dWithBroadcast<Deconv3d, ReferenceOp, true, TestSplitK>();
EXPECT_TRUE(passed);
}
TEST(SM80_Device_Deconv3d_With_Residual_Block_Plus_Analytic_ImplicitGemm_f32ndhwc_f32ndhwc_f32ndhwc_simt_f32,
128x128_8x4_32x64x8) {
// Resnet
Deconv3dSM80TestResidualBlock<cutlass::epilogue::thread::Identity, cutlass::plus, cutlass::epilogue::thread::ReLu>();
}
////////////////////////////////////////////////////////////////////////////////
#endif // CUTLASS_ARCH_MMA_SM80_SUPPORTED
////////////////////////////////////////////////////////////////////////////////