* v3.6 * update changelog * update readme * fix typo * fixing typos * hopper gemm with weight prefetch --------- Co-authored-by: yuzhai <yuzhai@nvidia.com> Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
931 lines
24 KiB
C++
931 lines
24 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Define basic numeric operators
|
|
|
|
This is inspired by the Standard Library's <functional> header.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/platform/platform.h"
|
|
#if defined(__CUDACC_RTC__)
|
|
#include "cutlass/floating_point_nvrtc.h"
|
|
#endif
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
#include <mma.h>
|
|
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
#ifdef _MSC_VER
|
|
// Provides support for alternate operators such as 'and', 'or', ...
|
|
#include <iso646.h>
|
|
#endif // _MSC_VER
|
|
|
|
namespace cutlass {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct absolute_value_op {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs) const {
|
|
return abs(lhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct absolute_value_op<float> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs) const { return fabs(lhs); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct plus {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs += rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct minus {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs -= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct multiplies {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs *= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct scale {
|
|
T const scaling_factor_;
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
scale(float scaling_factor) : scaling_factor_(scaling_factor) {
|
|
}
|
|
|
|
T operator()(T const &rhs) const {
|
|
T result = rhs * scaling_factor_;
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
|
/// Partial specializations needed when __CUDA_NO_HALF2_OPERATORS__ is set
|
|
template<>
|
|
struct plus<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hadd2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct minus<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hsub2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct multiplies<__half2> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
|
|
return __hmul2(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
/// Partial specializations needed when __CUDA_NO_HALF_OPERATORS__ is set
|
|
template<>
|
|
struct plus<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hadd(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct minus<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hsub(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct multiplies<__half> {
|
|
CUTLASS_HOST_DEVICE
|
|
__half operator()(__half lhs, __half const &rhs) const {
|
|
return __hmul(lhs, rhs);
|
|
}
|
|
};
|
|
#endif // defined(__CUDA_ARCH__)
|
|
|
|
|
|
/// Squares with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct square {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Returns the magnitude squared of an element.
|
|
template <typename T, typename Output = T>
|
|
struct magnitude_squared {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Computes the square of a difference with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct square_difference {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs, T rhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs) - Output(rhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
/// Computes the square of a difference with optional conversion
|
|
template <typename T, typename Output = T>
|
|
struct magnitude_squared_difference {
|
|
CUTLASS_HOST_DEVICE
|
|
Output operator()(T lhs, T rhs) const {
|
|
multiplies<Output> mul_op;
|
|
|
|
Output y = Output(lhs) - Output(rhs);
|
|
return mul_op(y, y);
|
|
}
|
|
};
|
|
|
|
// Computes the reciprocal square root
|
|
template <typename T>
|
|
struct inverse_square_root;
|
|
|
|
template <>
|
|
struct inverse_square_root<float> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const &lhs) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return rsqrtf(lhs);
|
|
#else
|
|
return 1.f / std::sqrt(lhs);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct inverse_square_root<half_t> {
|
|
CUTLASS_HOST_DEVICE
|
|
half_t operator()(half_t const &lhs) const {
|
|
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 520)
|
|
auto result = hrsqrt(reinterpret_cast<__half const &>(lhs));
|
|
return reinterpret_cast<half_t const &>(result);
|
|
#else
|
|
return half_t(1.f / std::sqrt(half_t::convert(lhs)));
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/// Divides
|
|
template <typename T>
|
|
struct divides {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
lhs /= rhs;
|
|
return lhs;
|
|
}
|
|
};
|
|
|
|
/// reciprocal_approximate
|
|
template <typename T>
|
|
struct reciprocal_approximate {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs) const {
|
|
return divides<T>{}(T(1), lhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct reciprocal_approximate <float> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs) const {
|
|
float ret;
|
|
#if defined(__CUDA_ARCH__)
|
|
asm volatile ("rcp.approx.f32 %0, %1;\n" : "=f"(ret) : "f"(lhs));
|
|
#else
|
|
ret = 1.0f / lhs;
|
|
#endif
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
/// reciprocal_approximate with ftz
|
|
template<typename T>
|
|
struct reciprocal_approximate_ftz : reciprocal_approximate<T>
|
|
{};
|
|
|
|
template <>
|
|
struct reciprocal_approximate_ftz <float> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs) const {
|
|
float ret;
|
|
#if defined(__CUDA_ARCH__)
|
|
asm volatile ("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(ret) : "f"(lhs));
|
|
#else
|
|
if (std::fpclassify(lhs) == FP_SUBNORMAL) {
|
|
lhs = 0.0f;
|
|
}
|
|
ret = 1.0f / lhs;
|
|
if (std::fpclassify(ret) == FP_SUBNORMAL) {
|
|
ret = 0.0f;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
/// Negate
|
|
template <typename T>
|
|
struct negate {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs) const {
|
|
return -lhs;
|
|
}
|
|
};
|
|
|
|
/// Greater equal
|
|
template <typename T>
|
|
struct greater_equal {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs >= rhs);
|
|
}
|
|
};
|
|
|
|
/// Greater
|
|
template <typename T>
|
|
struct greater {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs > rhs);
|
|
}
|
|
};
|
|
|
|
/// Less equal
|
|
template <typename T>
|
|
struct less_equal {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs <= rhs);
|
|
}
|
|
};
|
|
|
|
/// Less
|
|
template <typename T>
|
|
struct less {
|
|
CUTLASS_HOST_DEVICE
|
|
bool operator()(T const &lhs, T const &rhs) const {
|
|
return (lhs < rhs);
|
|
}
|
|
};
|
|
|
|
template <typename T, bool PropagateNaN = false>
|
|
struct maximum {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
if constexpr (PropagateNaN && cutlass::platform::is_floating_point<T>::value) {
|
|
using CUTLASS_CMATH_NAMESPACE :: isnan;
|
|
|
|
// Call isnan unqualified, so argument-dependent lookup (ADL)
|
|
// will find overloads such as cutlass::isnan(half_t).
|
|
// Calling ::isnan or std::isnan directly would force
|
|
// implicit conversions to float of custom number types
|
|
// in the cutlass namespace (e.g., cutlass::half_t).
|
|
return lhs > rhs || isnan(lhs) ? lhs : rhs;
|
|
}
|
|
else {
|
|
return (lhs < rhs ? rhs : lhs);
|
|
}
|
|
}
|
|
};
|
|
|
|
// This is a subclass and not an alias
|
|
// in order to work around a known Clang issue,
|
|
// where a template template parameter with one template parameter
|
|
// does not match classes that take multiple template parameters
|
|
// but have defaults for all but the first.
|
|
template<typename T>
|
|
struct maximum_with_default_nan_propagation : public maximum<T>
|
|
{};
|
|
|
|
template <>
|
|
struct maximum<float, false> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const &lhs, float const &rhs) const {
|
|
return fmaxf(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct maximum<float, true> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs, float rhs) const {
|
|
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
float res;
|
|
asm volatile("max.NaN.f32 %0, %1, %2;\n" : "=f"(res) : "f"(lhs), "f"(rhs));
|
|
return res;
|
|
#else
|
|
using CUTLASS_CMATH_NAMESPACE :: isnan;
|
|
|
|
return lhs > rhs || isnan(lhs) ? lhs : rhs;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// This is a subclass and not an alias
|
|
// in order to work around a known Clang issue,
|
|
// where a template template parameter with one template parameter
|
|
// does not match classes that take multiple template parameters
|
|
// but have defaults for all but the first.
|
|
template <typename T>
|
|
struct maximum_with_nan_propagation : maximum<T, true>
|
|
{};
|
|
|
|
// This alias exists for backwards compatibility only.
|
|
// Please use the correctly spelled class template above.
|
|
template <typename T>
|
|
using maximum_with_nan_propogation = maximum_with_nan_propagation<T>;
|
|
|
|
template <typename T, bool PropagateNaN = false>
|
|
struct minimum {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &lhs, T const &rhs) const {
|
|
if constexpr (PropagateNaN && cutlass::platform::is_floating_point<T>::value) {
|
|
using CUTLASS_CMATH_NAMESPACE :: isnan;
|
|
|
|
return lhs < rhs || isnan(lhs) ? lhs : rhs;
|
|
}
|
|
else {
|
|
return (rhs < lhs ? rhs : lhs);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct minimum<float, false> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float const &lhs, float const &rhs) const {
|
|
return fminf(lhs, rhs);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct minimum<float, true> {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(float lhs, float rhs) const {
|
|
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
float res;
|
|
asm volatile("min.NaN.f32 %0, %1, %2;\n" : "=f"(res) : "f"(lhs), "f"(rhs));
|
|
return res;
|
|
#else
|
|
// No need for ADL; call std::isnan(float) on host and ::isnan(float) on device.
|
|
return lhs < rhs || (CUTLASS_CMATH_NAMESPACE :: isnan(lhs)) ? lhs : rhs;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct minimum_with_nan_propagation : minimum<T, true>
|
|
{};
|
|
|
|
template <typename T, bool PropagateNaN = false>
|
|
struct maximum_absolute_value {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(T const &lhs, T const &rhs) const {
|
|
absolute_value_op<T> abs_op;
|
|
maximum<T, PropagateNaN> max_op;
|
|
|
|
return max_op(abs_op(lhs), abs_op(rhs));
|
|
}
|
|
};
|
|
|
|
// assumes the left operand is already an absolute value
|
|
template <typename T, bool PropagateNaN = false>
|
|
struct maximum_absolute_value_reduction {
|
|
CUTLASS_HOST_DEVICE
|
|
float operator()(T const &lhs, T const &rhs) const {
|
|
absolute_value_op<T> abs_op;
|
|
maximum<T, PropagateNaN> max_op;
|
|
|
|
return max_op(lhs, abs_op(rhs));
|
|
}
|
|
};
|
|
|
|
/// Fused multiply-add
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct multiply_add {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
return C(a) * C(b) + c;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct square_and_plus {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T lhs, T const &rhs) const {
|
|
multiply_add<T> multiply_add_op;
|
|
return multiply_add_op(rhs, rhs, lhs);
|
|
}
|
|
};
|
|
|
|
// Fused multiply-add that takes exactly one template parameter.
|
|
// This is useful for working around a known Clang issue,
|
|
// where a template template parameter with one template parameter
|
|
// does not match classes that take multiple template parameters
|
|
// but have defaults for all but the first.
|
|
template <typename A>
|
|
struct homogeneous_multiply_add : public multiply_add<A, A, A>
|
|
{};
|
|
|
|
/// Fused multiply-add
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct multiply_add_relu0 {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
maximum<C> mx;
|
|
return mx(C(a) * C(b) + c, C(0));
|
|
}
|
|
};
|
|
|
|
/// Guarded-multiply-add
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct guarded_multiply_add {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
using CUTLASS_CMATH_NAMESPACE :: isnan;
|
|
|
|
if (isnan(a) || isnan(b)) {
|
|
return C(0);
|
|
}
|
|
return C(a) * C(b) + c;
|
|
}
|
|
};
|
|
|
|
/// Guarded-multiply-add
|
|
template <>
|
|
struct guarded_multiply_add<half_t, half_t, half_t> {
|
|
CUTLASS_HOST_DEVICE
|
|
half_t operator()(half_t const &a, half_t const &b, half_t const &c) const {
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
|
|
half_t result;
|
|
asm ("fma.rn.oob.f16 %0, %1, %2, %3;\n"
|
|
: "=h"(*reinterpret_cast<uint16_t*>(&result))
|
|
: "h"(*reinterpret_cast<uint16_t const*>(&a)), "h"(*reinterpret_cast<uint16_t const*>(&b)), "h"(*reinterpret_cast<uint16_t const*>(&c)));
|
|
return result;
|
|
#else
|
|
// Namespace-qualifying isnan as cutlass::isnan saves the compiler
|
|
// the trouble of argument-dependent lookup. Calling std::isnan or
|
|
// ::isnan here would result in unwanted implicit conversion to float.
|
|
if (cutlass::isnan(a) || cutlass::isnan(b)) {
|
|
return half_t(0);
|
|
}
|
|
return a * b + c;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/// Guarded-multiply-add-relu0
|
|
template <typename A, typename B = A, typename C = A>
|
|
struct guarded_multiply_add_relu0 {
|
|
CUTLASS_HOST_DEVICE
|
|
C operator()(A const &a, B const &b, C const &c) const {
|
|
using CUTLASS_CMATH_NAMESPACE :: isnan;
|
|
|
|
if (isnan(a) || isnan(b)) {
|
|
return C(0);
|
|
}
|
|
maximum<C> mx;
|
|
return mx(C(a) * C(b) + c, C(0));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct guarded_multiply_add_relu0<half_t, half_t, half_t> {
|
|
CUTLASS_HOST_DEVICE
|
|
half_t operator()(half_t const &a, half_t const &b, half_t const &c) const {
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
|
|
half_t result;
|
|
asm ("fma.rn.oob.relu.f16 %0, %1, %2, %3;\n"
|
|
: "=h"(*reinterpret_cast<uint16_t*>(&result))
|
|
: "h"(*reinterpret_cast<uint16_t const*>(&a)), "h"(*reinterpret_cast<uint16_t const*>(&b)), "h"(*reinterpret_cast<uint16_t const*>(&c)));
|
|
return result;
|
|
#else
|
|
if (cutlass::isnan(a) || cutlass::isnan(b)) {
|
|
return half_t(0);
|
|
}
|
|
maximum<half_t> mx;
|
|
return mx(a * b + c, half_t(0));
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/// Fused multiply-add
|
|
template <typename T>
|
|
struct and_add {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b, T const &c) const {
|
|
return ((a & b) + c);
|
|
}
|
|
};
|
|
|
|
|
|
/// Fused multiply-add
|
|
template <typename T>
|
|
struct xor_add {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b, T const &c) const {
|
|
return ((a ^ b) + c);
|
|
}
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
// Whether namespace-unqualified conj(t) for t of type T is
|
|
// well-formed. This says whether the compiler can find
|
|
// namespace-unqualified conj(T) via argument-dependent lookup.
|
|
// If so, then CUTLASS assumes that conj(t) returns
|
|
// the complex conjugate of t.
|
|
template <typename T, typename Enable = void>
|
|
struct has_unqualified_conj : cutlass::platform::false_type
|
|
{};
|
|
|
|
template<typename T>
|
|
struct has_unqualified_conj<
|
|
T,
|
|
decltype(conj(cutlass::platform::declval<T>()), void())
|
|
> : cutlass::platform::true_type
|
|
{};
|
|
|
|
template <typename T>
|
|
constexpr bool has_unqualified_conj_v = has_unqualified_conj<T>::value;
|
|
|
|
} // namespace detail
|
|
|
|
// forward declaration (needed for conjugate below)
|
|
template<class T>
|
|
CUTLASS_HOST_DEVICE T conj(T const& z);
|
|
|
|
namespace detail {
|
|
|
|
// Whether cutlass::conj(t) for t of type T is well-formed.
|
|
// If so, then CUTLASS assumes that cutlass::conj(t)
|
|
// returns the complex conjugate of t.
|
|
template <typename T, typename Enable = void>
|
|
struct has_cutlass_conj : cutlass::platform::false_type
|
|
{};
|
|
|
|
template<typename T>
|
|
struct has_cutlass_conj<
|
|
T,
|
|
decltype(cutlass::conj(cutlass::platform::declval<T>()), void())
|
|
> : cutlass::platform::true_type
|
|
{};
|
|
|
|
template <typename T>
|
|
constexpr bool has_cutlass_conj_v = has_cutlass_conj<T>::value;
|
|
|
|
} // namespace detail
|
|
|
|
// Return the complex conjugate of the input.
|
|
//
|
|
// If the struct hasn't already been specialized for type T, then
|
|
//
|
|
// 1. for arithmetic types, return z;
|
|
//
|
|
// 2. for types where either (namespace-unqualified) conj(z) or
|
|
// cutlass::conj(z) is well formed, declare "using cutlass::conj;"
|
|
// and return conj(z); and
|
|
//
|
|
// 3. for everything else, return z.
|
|
//
|
|
// Regarding (1), the C++ Standard Library makes std::conj always
|
|
// return std::complex, even for (noncomplex) arithmetic types.
|
|
// cutlass::conj(T t) needs to return type T. This follows the
|
|
// convention of linear algebra software like the BLAS, where
|
|
// "conjugate transpose" means the same thing as "transpose" for a
|
|
// matrix of noncomplex numbers.
|
|
//
|
|
// Case (2) covers std::complex, cuda::std::complex, and non-Standard
|
|
// (including user-defined) complex number types (for which "conj(z)"
|
|
// is findable via argument-dependent lookup). cutlass::conj has a
|
|
// totally generic overload, but a more type-specific overload in any
|
|
// namespace will take precedence.
|
|
//
|
|
// Case (3) covers non-Standard non-complex number types.
|
|
//
|
|
// Users should not generally need to specialize this struct for their
|
|
// own custom complex or noncomplex types. The idiomatic way to
|
|
// identify a type T as "complex" is to make namespace-unqualified
|
|
// calls to conj(T) findable via argument-dependent lookup.
|
|
template <typename T>
|
|
struct conjugate {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const& z) const {
|
|
if constexpr (cutlass::platform::is_arithmetic_v<T>) {
|
|
return z;
|
|
}
|
|
else if constexpr (detail::has_unqualified_conj_v<T> || detail::has_cutlass_conj_v<T>) {
|
|
using cutlass::conj;
|
|
return conj(z);
|
|
}
|
|
else {
|
|
return z;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct first {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const & first, T const &...) const {
|
|
return first;
|
|
}
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const & first) const {
|
|
return first;
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct logical_and {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return ((static_cast<bool>(a) && static_cast<bool>(b)) ? T(1) : T());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct logical_or {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return ((static_cast<bool>(a) || static_cast<bool>(b)) ? T(1) : T());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct logical_not {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a) const {
|
|
return T(!(a));
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct bit_and {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a & b;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_or {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a | b;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_not {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a) const {
|
|
return ~a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct bit_xor {
|
|
CUTLASS_HOST_DEVICE
|
|
T operator()(T const &a, T const &b) const {
|
|
return a ^ b;
|
|
}
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/// Atomic reductions
|
|
|
|
template <typename T>
|
|
struct atomic_add
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(T *ptr, const T &data)
|
|
{
|
|
#if defined(__CUDA_ARCH__)
|
|
atomicAdd(ptr, data);
|
|
#else
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(data);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct atomic_add<double>
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(double *ptr, const double &data)
|
|
{
|
|
#if !defined(__CUDA_ARCH__)
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(data);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
#elif (__CUDA_ARCH__ >= 600)
|
|
atomicAdd(ptr, data);
|
|
#else
|
|
// Use CAS loop
|
|
unsigned long long int* ptr_int = reinterpret_cast<unsigned long long int*>(ptr);
|
|
unsigned long long int old_int = *ptr_int;
|
|
unsigned long long int assumed_int;
|
|
|
|
do {
|
|
double update = data + __longlong_as_double(old_int);
|
|
assumed_int = old_int;
|
|
old_int = atomicCAS(ptr_int, assumed_int, __double_as_longlong(update));
|
|
} while (assumed_int != old_int);
|
|
#endif // (__CUDA_ARCH__ >= 600)
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct atomic_add<half2>
|
|
{
|
|
CUTLASS_DEVICE
|
|
void operator()(half2 *ptr, const half2 &data)
|
|
{
|
|
#if !defined(__CUDA_ARCH__) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 600))
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(data);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
#else
|
|
// Vector-2 atomic reduction requires .target sm_60 or higher
|
|
uint32_t word = reinterpret_cast<const uint32_t&>(data);
|
|
asm volatile ("red.gpu.global.add.noftz.f16x2 [%0], %1;\n" : : "l"(ptr), "r"(word));
|
|
#endif // (__CUDA_ARCH__ >= 600)
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using red [[deprecated("use atomic_add instead")]] = atomic_add<T>;
|
|
|
|
template <typename T>
|
|
struct atomic_maximum {
|
|
CUTLASS_DEVICE
|
|
T operator()(T *ptr, T value) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
return atomicMax(ptr, value);
|
|
#else
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(value);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
return 0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct atomic_maximum<float> {
|
|
CUTLASS_DEVICE
|
|
float operator()(float *ptr, float value) const {
|
|
#if defined(__CUDA_ARCH__)
|
|
// In device code, make sure that we do NOT try to use
|
|
// std::signbit, as that won't work if building with NVRTC.
|
|
// Instead, prefix "::" to call signbit from the global namespace,
|
|
// which CUDA guarantees to work in device code without including
|
|
// any headers.
|
|
//
|
|
return ! ::signbit(value) ?
|
|
__int_as_float(atomicMax((int*)ptr, __float_as_int(value))) :
|
|
__uint_as_float(atomicMin((unsigned int*)ptr, __float_as_uint(value)));
|
|
#else
|
|
CUTLASS_UNUSED(ptr);
|
|
CUTLASS_UNUSED(value);
|
|
CUTLASS_NOT_IMPLEMENTED();
|
|
return 0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// is_atomic
|
|
template <class Fn>
|
|
struct is_atomic : platform::false_type {};
|
|
template <class T>
|
|
struct is_atomic<atomic_add<T>> : platform::true_type {};
|
|
template <class T>
|
|
struct is_atomic<atomic_maximum<T>> : platform::true_type {};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Partial specializations for nvcuda::wmma::fragment<Use, m, n, k, T, Layout>
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
template<typename Use, int m, int n, int k, typename T, typename Layout>
|
|
struct plus<nvcuda::wmma::fragment<Use, m, n, k, T, Layout>>
|
|
{
|
|
using Fragment = nvcuda::wmma::fragment<Use, m, n, k, T, Layout>;
|
|
using ElementType = typename Fragment::element_type;
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Fragment operator()(Fragment const &lhs, Fragment const &rhs) const
|
|
{
|
|
Fragment result;
|
|
plus<ElementType> scalar_op;
|
|
|
|
ElementType *result_elts = reinterpret_cast<ElementType*>(&result);
|
|
const ElementType *lhs_elts = reinterpret_cast<const ElementType*>(&lhs);
|
|
const ElementType *rhs_elts = reinterpret_cast<const ElementType*>(&rhs);
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Fragment::num_elements; i++) {
|
|
result_elts[i] = scalar_op(lhs_elts[i], rhs_elts[i]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|