cutlass/include/cutlass/epilogue/thread/linear_combination_residual_block.h
masahi c2ee13a0fe
Add epilogue functor for residual block fusion (#391)
* Add epilogue functor for residual block fusion

* Do not run split-k tests when ActivationOp is not Identity

* explain TestSplitK param

* return early
2021-12-29 22:53:40 -05:00

164 lines
6.6 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Epilogue functor specialized for residual blocks in deep neural network.
*/
#pragma once
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
// /// Models a residual block of the form: UnaryOp(BinaryOp(ActivationOp(TensorOp(X) + bias), residual))
template <typename ElementOutput_, typename ElementAccumulator_,
typename ElementCompute_, typename ElementC_, int ElementsPerAccess,
template <typename T> class ActivationOp_,
template <typename T> class BinaryOp_,
template <typename T> class UnaryOp_>
class LinearCombinationResidualBlock {
public:
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using UnaryOp = UnaryOp_<Array<ElementCompute, kCount>>;
using BinaryOp = BinaryOp_<Array<ElementCompute, kCount>>;
using ActivationOp = ActivationOp_<Array<ElementCompute, kCount>>;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementC, kElementsPerAccess>;
using FragmentOutput = Array<ElementOutput, kElementsPerAccess>;
using ElementZ = ElementOutput_;
using ElementT = ElementZ;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
static bool const kIsHeavy = true;
static bool const kStoreZ = true;
static bool const kStoreT = false;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales residual input
ElementCompute const *alpha_ptr{nullptr}; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr{nullptr}; ///< pointer to residual scalar - if not null, loads it from memory
CUTLASS_HOST_DEVICE
Params() : alpha(ElementCompute(1)), beta(ElementCompute(1)) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute alpha, ElementCompute beta)
: alpha(alpha), beta(beta) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute const *alpha_ptr, ElementCompute const *beta_ptr)
: alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {}
};
private:
ElementCompute alpha_;
ElementCompute beta_;
bool skip_elementwise_;
public:
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationResidualBlock(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
skip_elementwise_ = false;
}
/// The "source" tensor corresponds to the residual input
CUTLASS_HOST_DEVICE
bool is_source_needed() const { return true; }
/// Functionally required for serial reduction in the epilogue
/// IMPORTANT: Split-k is supported only when ActivationOp is Identity.
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
skip_elementwise_ = true;
}
}
/// Applies the operation UnaryOp(BinaryOp(ActivationOp(AB + bias), residual))
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &frag_Z, FragmentOutput &, FragmentAccumulator const &AB,
FragmentC const &residual,
FragmentCompute const &bias) const {
UnaryOp unary_op;
BinaryOp binary_op;
ActivationOp activation;
FragmentCompute tmp_Accum =
NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_residual =
NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(residual);
FragmentCompute z =
binary_op(activation(alpha_ * tmp_Accum + bias), beta_ * tmp_residual);
FragmentCompute result_Z = skip_elementwise_ ? z : unary_op(z);
NumericArrayConverter<ElementOutput, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
}
/// Should never be called
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &, FragmentOutput &, FragmentAccumulator const &,
FragmentCompute const &) const {}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////