
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
563 lines
21 KiB
Plaintext
563 lines
21 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Planar Complex GEMM
|
|
|
|
This example demonstrates the CUTLASS Library's exposure of planar complex GEMM kernels supporting
|
|
the batched strided mode.
|
|
|
|
These kernels represent complex matrices by storing the real and imaginary parts of the matrix in
|
|
disjoint regions in memory. These real-valued matrices are stored using existing cuBLAS layouts
|
|
as either column-major or row-major layouts with a single leading dimension indicating the stride
|
|
between columns or rows.
|
|
|
|
The CUTLASS Library collects multiple template instantiations in a data structure and offers
|
|
a BLAS-like dispatch API to invoke the appropriate kernel on the Volta or Turing architectures.
|
|
|
|
CUTLASS decouples matrix layout from complex transformation, so four possible transformations
|
|
are possible on the A and B operands:
|
|
|
|
n: column-major
|
|
c: column-major complex conjugate
|
|
t: row-major
|
|
h: row-major complex conjugate
|
|
|
|
The CUTLASS Library contains many kernel instances specialized for architecture, data type, tile
|
|
size, and alignment. This can result in long compile times.
|
|
|
|
To build strictly the planar complex kernels needed for general application, execute the following
|
|
CMake command in an empty build directory.
|
|
|
|
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
|
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_*gemm_planar_complex
|
|
|
|
This builds all planar complex GEMM variants for Volta and Turing architectures.
|
|
|
|
To build strictly the kernels needed for this example, an even narrower filter string may be
|
|
specified as follows. This only builds planar complex GEMMs targeting Tensor Cores for
|
|
the 'CN' layout configuration (conjugate A operand with both A and B as column-major).
|
|
|
|
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
|
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_f16_s*gemm_planar_complex_f16*cn
|
|
|
|
$ make 10_planar_complex
|
|
|
|
$ ./examples/10_planar_complex/10_planar_complex --m=2048 --n=1024 --k=512 --batch=10
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/gemm/gemm.h"
|
|
|
|
#include "cutlass/util/command_line.h"
|
|
#include "cutlass/util/distribution.h"
|
|
#include "cutlass/util/device_memory.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/util/host_tensor_planar_complex.h"
|
|
|
|
#include "cutlass/util/reference/device/tensor_fill.h"
|
|
|
|
#include "cutlass/util/reference/device/gemm_planar_complex.h"
|
|
#include "cutlass/util/reference/device/tensor_compare.h"
|
|
|
|
#include "cutlass/library/handle.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Result structure
|
|
struct Result {
|
|
|
|
double runtime_ms;
|
|
double gflops;
|
|
cutlass::Status status;
|
|
cudaError_t error;
|
|
bool passed;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
Result(
|
|
double runtime_ms = 0,
|
|
double gflops = 0,
|
|
cutlass::Status status = cutlass::Status::kSuccess,
|
|
cudaError_t error = cudaSuccess
|
|
):
|
|
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Command line options parsing
|
|
struct Options {
|
|
|
|
bool help;
|
|
|
|
cutlass::gemm::GemmCoord problem_size;
|
|
int batch_count;
|
|
cutlass::complex<float> alpha;
|
|
cutlass::complex<float> beta;
|
|
|
|
bool reference_check;
|
|
int iterations;
|
|
|
|
Options():
|
|
help(false),
|
|
problem_size({1024, 1024, 1024}),
|
|
batch_count(1),
|
|
reference_check(true),
|
|
iterations(20),
|
|
alpha(1),
|
|
beta() { }
|
|
|
|
bool valid() {
|
|
return true;
|
|
}
|
|
|
|
// Parses the command line
|
|
void parse(int argc, char const **args) {
|
|
cutlass::CommandLine cmd(argc, args);
|
|
|
|
if (cmd.check_cmd_line_flag("help")) {
|
|
help = true;
|
|
}
|
|
|
|
cmd.get_cmd_line_argument("m", problem_size.m());
|
|
cmd.get_cmd_line_argument("n", problem_size.n());
|
|
cmd.get_cmd_line_argument("k", problem_size.k());
|
|
cmd.get_cmd_line_argument("batch", batch_count);
|
|
|
|
cmd.get_cmd_line_argument("alpha", alpha.real());
|
|
cmd.get_cmd_line_argument("alpha_i", alpha.imag());
|
|
cmd.get_cmd_line_argument("beta", beta.real());
|
|
cmd.get_cmd_line_argument("beta_i", beta.imag());
|
|
|
|
cmd.get_cmd_line_argument("iterations", iterations);
|
|
}
|
|
|
|
/// Prints the usage statement.
|
|
std::ostream & print_usage(std::ostream &out) const {
|
|
|
|
out << "10_planar_complex example\n\n"
|
|
<< " This example uses the CUTLASS Library to execute Planar Complex GEMM computations.\n\n"
|
|
<< "Options:\n\n"
|
|
<< " --help If specified, displays this usage statement.\n\n"
|
|
<< " --m <int> GEMM M dimension\n"
|
|
<< " --n <int> GEMM N dimension\n"
|
|
<< " --k <int> GEMM K dimension\n"
|
|
<< " --batch <int> Number of GEMM operations executed in one batch\n"
|
|
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
|
|
<< " --alpha_i <f32> Epilogue scalar alpha (imaginary part)\n"
|
|
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
|
|
<< " --beta_i <f32> Epilogue scalar beta (imaginary part)\n\n"
|
|
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
|
|
|
|
out << "\n\nExamples:\n\n"
|
|
<< "$ ./examples/10_planar_complex/10_planar_complex --batch=7 --m=1024 --n=512 --k=1024 \\\n"
|
|
<< " --alpha=2 --alpha_i=-2 --beta=0.707 --beta_i=-.707\n\n";
|
|
|
|
return out;
|
|
}
|
|
|
|
/// Compute performance in GFLOP/s
|
|
double gflops(double runtime_s) const {
|
|
|
|
// Number of real-valued multiply-adds
|
|
int64_t fmas = problem_size.product() * batch_count * 4;
|
|
|
|
// Two flops per multiply-add
|
|
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
|
}
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Performance test environment for planar complex
|
|
class TestbedPlanarComplex {
|
|
public:
|
|
|
|
using ElementA = cutlass::half_t;
|
|
using LayoutA = cutlass::layout::ColumnMajor;
|
|
using ElementB = cutlass::half_t;
|
|
using LayoutB = cutlass::layout::ColumnMajor;
|
|
using ElementC = cutlass::half_t;
|
|
using LayoutC = cutlass::layout::ColumnMajor;
|
|
using ElementCompute = float;
|
|
using ElementAccumulator = float;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
cutlass::library::Handle handle;
|
|
|
|
cutlass::gemm::GemmCoord problem_size;
|
|
int batch_count;
|
|
cutlass::DeviceAllocation<ElementA> tensor_A;
|
|
cutlass::DeviceAllocation<ElementB> tensor_B;
|
|
cutlass::DeviceAllocation<ElementC> tensor_C;
|
|
cutlass::DeviceAllocation<ElementC> tensor_D;
|
|
cutlass::DeviceAllocation<ElementC> tensor_D_ref;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
TestbedPlanarComplex(
|
|
Options const &options
|
|
):
|
|
problem_size(options.problem_size), batch_count(options.batch_count) {
|
|
|
|
// Allocate device memory for batched strided GEMM
|
|
tensor_A.reset(int64_t(problem_size.m()) * problem_size.k() * batch_count * 2);
|
|
tensor_B.reset(int64_t(problem_size.k()) * problem_size.n() * batch_count * 2);
|
|
tensor_C.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
|
tensor_D.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
|
tensor_D_ref.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
|
}
|
|
|
|
void initialize() {
|
|
|
|
uint64_t seed = 1073;
|
|
|
|
// Use small integers to simplify correctness checking
|
|
int scope_max = 6;
|
|
int scope_min = -6;
|
|
|
|
cutlass::reference::device::BlockFillRandomUniform(
|
|
tensor_A.get(), tensor_A.size(), seed, ElementA(scope_max), ElementA(scope_min), 0);
|
|
|
|
cutlass::reference::device::BlockFillRandomUniform(
|
|
tensor_B.get(), tensor_B.size(), seed * 2019, ElementB(scope_max), ElementB(scope_min), 0);
|
|
|
|
cutlass::reference::device::BlockFillRandomUniform(
|
|
tensor_C.get(), tensor_C.size(), seed * 2020, ElementC(scope_max), ElementC(scope_min), 0);
|
|
}
|
|
|
|
Result profile(Options const &options) {
|
|
|
|
Result result;
|
|
|
|
initialize();
|
|
|
|
ElementA *ptr_A = tensor_A.get();
|
|
ElementB *ptr_B = tensor_B.get();
|
|
ElementC *ptr_C = tensor_C.get();
|
|
ElementC *ptr_D = tensor_D.get();
|
|
|
|
int64_t batch_stride_A = int64_t(problem_size.m()) * problem_size.k() * 2;
|
|
int64_t batch_stride_B = int64_t(problem_size.k()) * problem_size.n() * 2;
|
|
int64_t batch_stride_C = int64_t(problem_size.m()) * problem_size.n() * 2;
|
|
int64_t batch_stride_D = int64_t(problem_size.m()) * problem_size.n() * 2;
|
|
|
|
int lda = LayoutA::packed({problem_size.m(), problem_size.k()}).stride(0);
|
|
int ldb = LayoutB::packed({problem_size.k(), problem_size.n()}).stride(0);
|
|
int ldc = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
|
int ldd = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
|
|
|
int64_t imag_stride_A = int64_t(problem_size.m()) * problem_size.k();
|
|
int64_t imag_stride_B = int64_t(problem_size.k()) * problem_size.n();
|
|
int64_t imag_stride_C = int64_t(problem_size.m()) * problem_size.n();
|
|
int64_t imag_stride_D = int64_t(problem_size.m()) * problem_size.n();
|
|
|
|
//
|
|
// Construct events
|
|
//
|
|
|
|
cudaEvent_t events[2];
|
|
|
|
for (auto & event : events) {
|
|
result.error = cudaEventCreate(&event);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Record an event at the start of a series of GEMMs
|
|
result.error = cudaEventRecord(events[0]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Run profiling loop
|
|
//
|
|
|
|
for (int iter = 0; iter < options.iterations; ++iter) {
|
|
|
|
//
|
|
// Execute the planar complex GEMM kernel via the CUTLASS Library's
|
|
// dispatch routines.
|
|
//
|
|
// Note, for planar complex GEMM kernels, all numeric type arguments
|
|
// specify the data type of the base real types. These are understood to
|
|
// apply to planar complex representations of matrices in memory and to complex<T>
|
|
// structures for scalars.
|
|
//
|
|
// See tools/library/include/cutlass/library/handle.h for more details.
|
|
//
|
|
|
|
result.status = handle.gemm_planar_complex(
|
|
problem_size.m(), // GEMM M dimension
|
|
problem_size.n(), // GEMM N dimension
|
|
problem_size.k(), // GEMM K dimension
|
|
|
|
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued accumulation
|
|
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued alpha/beta scalars
|
|
|
|
&options.alpha, // Pointer to alpha scalar, of type complex<T>
|
|
|
|
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued A matrix
|
|
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of A matrix
|
|
cutlass::library::ComplexTransform::kConjugate, // Complex transformation on A matrix operand
|
|
ptr_A, // Pointer to real part of A matrix
|
|
ptr_A + imag_stride_A, // Pointer to imaginary part of A matrix
|
|
lda, // Leading dimension of real part of A matrix
|
|
lda, // Leading dimension of imaginary part of A matrix
|
|
|
|
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued B matrix
|
|
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of B matrix
|
|
cutlass::library::ComplexTransform::kNone, // Complex transformation on B matrix operand
|
|
ptr_B, // Pointer to real part of B matrix
|
|
ptr_B + imag_stride_B, // Pointer to imaginary part of B matrix
|
|
ldb, // Leading dimension of real part of B matrix
|
|
ldb, // Leading dimension of imaginary part of B matrix
|
|
|
|
&options.beta, // Pointer to beta scalar, of type complex<T>
|
|
|
|
cutlass::library::NumericTypeID::kF16, // Base data type of complex valued C and D matrices
|
|
|
|
ptr_C, // Pointer to real part of C matrix
|
|
ptr_C + imag_stride_C, // Pointer to imaginary part of C matrix
|
|
ldc, // Leading dimension of real part of C matrix
|
|
ldc, // Leading dimension of imaginary part of C matrix
|
|
|
|
ptr_D, // Pointer to real part of D matrix
|
|
ptr_D + imag_stride_D, // Pointer to imaginary part of D matrix
|
|
ldd, // Leading dimension of real part of D matrix
|
|
ldd, // Leading dimension of imaginary part of D matrix
|
|
|
|
batch_count, // Number of batched elements
|
|
|
|
batch_stride_A, // Stride between batches of real parts of A matrix
|
|
batch_stride_A, // Stride between batches of imaginary parts of A matrix
|
|
|
|
batch_stride_B, // Stride between batches of real parts of B matrix
|
|
batch_stride_B, // Stride between batches of imaginary parts of B matrix
|
|
|
|
batch_stride_C, // Stride between batches of real parts of C matrix
|
|
batch_stride_C, // Stride between batches of imaginary parts of C matrix
|
|
|
|
batch_stride_D, // Stride between batches of real parts of D matrix
|
|
batch_stride_D // Stride between batches of imaginary parts of D matrix
|
|
);
|
|
|
|
if (result.status != cutlass::Status::kSuccess) {
|
|
std::cerr << "CUTLASS internal error - configuration not supported" << std::endl;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Stop profiling loop
|
|
//
|
|
|
|
// Record an event when the GEMMs are complete
|
|
result.error = cudaEventRecord(events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Wait for work on the device to complete.
|
|
result.error = cudaEventSynchronize(events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Measure elapsed runtime
|
|
float runtime_ms = 0;
|
|
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
|
if (result.error != cudaSuccess) {
|
|
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
// Compute average runtime and GFLOPs.
|
|
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
|
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
|
|
|
// Cleanup
|
|
for (auto event : events) {
|
|
(void)cudaEventDestroy(event);
|
|
}
|
|
|
|
if (handle.get_last_operation()) {
|
|
std::cout << "Recently executed '" << handle.get_last_operation()->description().name << "'" << std::endl;
|
|
}
|
|
|
|
//
|
|
// Compute reference in device code
|
|
//
|
|
|
|
if (options.reference_check) {
|
|
|
|
result.passed = true;
|
|
|
|
for (int64_t idx = 0; result.passed && idx < int64_t(batch_count); ++idx) {
|
|
cutlass::reference::device::GemmPlanarComplex<
|
|
ElementA, LayoutA,
|
|
ElementB, LayoutB,
|
|
ElementC, LayoutC,
|
|
ElementAccumulator
|
|
>(
|
|
problem_size,
|
|
options.alpha,
|
|
{tensor_A.get() + idx * batch_stride_A, lda, imag_stride_A},
|
|
cutlass::ComplexTransform::kConjugate,
|
|
{tensor_B.get() + idx * batch_stride_B, ldb, imag_stride_B},
|
|
cutlass::ComplexTransform::kNone,
|
|
options.beta,
|
|
{tensor_C.get() + idx * batch_stride_C, ldc, imag_stride_C},
|
|
{tensor_D_ref.get() + idx * batch_stride_D, ldd, imag_stride_D}
|
|
);
|
|
|
|
ElementC epsilon = 0.1_hf;
|
|
ElementC nonzero_floor = 0.1_hf;
|
|
|
|
result.passed = cutlass::reference::device::BlockCompareRelativelyEqual(
|
|
tensor_D.get() + idx * batch_stride_D,
|
|
tensor_D_ref.get() + idx * batch_stride_D,
|
|
batch_stride_D,
|
|
epsilon,
|
|
nonzero_floor
|
|
);
|
|
}
|
|
|
|
if (result.passed) {
|
|
std::cout << "Reference check passed." << std::endl;
|
|
}
|
|
else {
|
|
std::cerr << "Error - reference check failed." << std::endl;
|
|
}
|
|
}
|
|
|
|
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
|
|
std::cout << " GFLOPs: " << result.gflops << std::endl;
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char const **args) {
|
|
|
|
//
|
|
// This example uses mma.sync to directly access Tensor Cores to achieve peak performance.
|
|
//
|
|
// Volta Tensor Core operations are first available in CUDA 10.1 Toolkit.
|
|
//
|
|
// Turing Tensor Core operations are first available in CUDA 10.2 Toolkit.
|
|
//
|
|
|
|
cudaDeviceProp props;
|
|
|
|
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
|
if (error != cudaSuccess) {
|
|
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (props.major < 7) {
|
|
std::cerr << "Volta Tensor Core operations must be run on a machine with compute capability at least 70."
|
|
<< std::endl;
|
|
|
|
// Returning zero so this test passes on older architectures even though its actions are no-op.
|
|
return 0;
|
|
}
|
|
else if (props.major == 7 && props.minor <= 2) {
|
|
//
|
|
// If running on the Volta architecture, at least CUDA 10.1 Toolkit is required to run this example.
|
|
//
|
|
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
|
|
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
|
|
|
|
// Returning zero so this test passes on older Toolkits even though its actions are no-op.
|
|
return 0;
|
|
}
|
|
}
|
|
else if (props.major == 7 && props.minor >= 5) {
|
|
//
|
|
// If running on the Turing architecture, at least CUDA 10.2 Toolkit is required to run this example.
|
|
//
|
|
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
|
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
|
|
|
// Returning zero so this test passes on older Toolkits even though its actions are no-op.
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
// NVIDIA Ampere Architecture GPUs (SM80 and later) are fully supported on CUDA 11 Toolkit and beyond.
|
|
//
|
|
// fall through
|
|
}
|
|
|
|
//
|
|
// Parse options
|
|
//
|
|
|
|
Options options;
|
|
|
|
options.parse(argc, args);
|
|
|
|
if (options.help) {
|
|
options.print_usage(std::cout) << std::endl;
|
|
return 0;
|
|
}
|
|
|
|
// Execute one problem size
|
|
if (!options.valid()) {
|
|
std::cerr << "Invalid problem." << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
TestbedPlanarComplex testbed(options);
|
|
|
|
Result result = testbed.profile(options);
|
|
|
|
return result.passed ? 0 : -1;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|