cutlass/test/unit/core/complex.cu
Andrew Kerr c53f3339bb
CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00

153 lines
5.7 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief CUTLASS host-device template for complex numbers supporting all CUTLASS numeric types.
*/
// Standard Library's std::complex<T> used for reference checking
#include <complex>
#include "../common/cutlass_unit_test.h"
#include "cutlass/complex.h"
#include "cutlass/numeric_conversion.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, f64_to_f32_conversion) {
cutlass::complex<double> source = {1.5, -1.25};
cutlass::complex<float> dest = cutlass::complex<float>(source); // explicit conversion
EXPECT_TRUE(source.real() == 1.5 && source.imag() == -1.25 &&
dest.real() == 1.5f && dest.imag() == -1.25f);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, f32_to_f64_conversion) {
cutlass::complex<float> source = {-1.5f, 1.25f};
cutlass::complex<double> dest = source; // implicit conversion
EXPECT_TRUE(source.real() == -1.5f && source.imag() == 1.25f &&
dest.real() == -1.5 && dest.imag() == 1.25);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, s32_to_f64_conversion) {
cutlass::complex<int> source = {-2, 1};
cutlass::complex<double> dest = source; // implicit conversion
EXPECT_TRUE(source.real() == -2 && source.imag() == 1 &&
dest.real() == -2 && dest.imag() == 1);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, f16_to_f32_conversion) {
cutlass::complex<cutlass::half_t> source = {1.5_hf, -1.25_hf};
cutlass::complex<float> dest = cutlass::complex<float>(source); // explicit conversion
EXPECT_TRUE(source.real() == 1.5_hf && source.imag() == -1.25_hf &&
dest.real() == 1.5f && dest.imag() == -1.25f);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
/// Thorough testing for basic complex math operators. Uses std::complex as a reference.
template <typename T, int N, int M>
struct ComplexOperators {
ComplexOperators() {
for (int ar = -N; ar <= N; ++ar) {
for (int ai = -N; ai <= N; ++ai) {
for (int br = -N; br <= N; ++br) {
for (int bi = -N; bi <= N; ++bi) {
cutlass::complex<T> Ae(T(ar) / T(M), T(ai) / T(M));
cutlass::complex<T> Be(T(br) / T(M), T(bi) / T(M));
std::complex<T> Ar(T(ar) / T(M), T(ai) / T(M));
std::complex<T> Br(T(br) / T(M), T(bi) / T(M));
cutlass::complex<T> add_e = Ae + Be;
cutlass::complex<T> sub_e = Ae - Be;
cutlass::complex<T> mul_e = Ae * Be;
std::complex<T> add_r = (Ar + Br);
std::complex<T> sub_r = (Ar - Br);
std::complex<T> mul_r = (Ar * Br);
EXPECT_EQ(real(add_e), real(add_r));
EXPECT_EQ(imag(add_e), imag(add_r));
EXPECT_EQ(real(sub_e), real(sub_r));
EXPECT_EQ(imag(sub_e), imag(sub_r));
EXPECT_EQ(real(mul_e), real(mul_r));
EXPECT_EQ(imag(mul_e), imag(mul_r));
if (!(br == 0 && bi == 0)) {
cutlass::complex<T> div_e = Ae / Be;
std::complex<T> div_r = Ar / Br;
T const kRange = T(0.001);
EXPECT_NEAR(real(div_e), real(div_r), kRange);
EXPECT_NEAR(imag(div_e), imag(div_r), kRange);
}
}
}
}
}
}
};
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, host_float) {
test::ComplexOperators<float, 32, 8> test;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(complex, host_double) {
test::ComplexOperators<double, 32, 8> test;
}
/////////////////////////////////////////////////////////////////////////////////////////////////