494 lines
18 KiB
C++
494 lines
18 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/* \file
|
|
\brief Defines profiling functionality for convolution
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <memory>
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
|
|
// CUTLASS Library includes
|
|
#include "cutlass/library/library.h"
|
|
#include "cutlass/library/util.h"
|
|
#include "cutlass/library/handle.h"
|
|
#include "cutlass/library/manifest.h"
|
|
#include "cutlass/library/singleton.h"
|
|
|
|
// Profiler includes
|
|
#include "options.h"
|
|
#include "device_context.h"
|
|
#include "operation_profiler.h"
|
|
#include "performance_result.h"
|
|
#include "problem_space.h"
|
|
#include "reduction_operation_profiler.h"
|
|
#if CUTLASS_ENABLE_CUDNN
|
|
#include "cudnn_helpers.h"
|
|
#endif //#if CUTLASS_ENABLE_CUDNN
|
|
#include "debug.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace profiler {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Abstract base class for each math function
|
|
class Conv2dOperationProfiler : public OperationProfiler {
|
|
public:
|
|
|
|
/// Problem structure obtained from problem space
|
|
struct Conv2dProblem {
|
|
|
|
int64_t n, h, w, c, p, q, k, r, s;
|
|
int64_t groups;
|
|
int64_t pad_h, pad_w;
|
|
int64_t stride_h, stride_w;
|
|
int64_t dilation_h, dilation_w;
|
|
|
|
std::vector<uint8_t> alpha;
|
|
std::vector<uint8_t> beta;
|
|
|
|
library::SplitKMode split_k_mode;
|
|
int64_t split_k_slices;
|
|
|
|
library::ConvModeID conv_mode;
|
|
|
|
library::Provider eq_gemm_provider;
|
|
|
|
// convolution with parallel interleaved reduction
|
|
// convolution epilogue (alpha, beta) = (1.0, 0.0)
|
|
// reduction epilogue (alpha, beta) = (Conv2dProblem::alpha, Conv2dProblem::beta)
|
|
std::vector<uint8_t> alpha_one;
|
|
std::vector<uint8_t> beta_zero;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Total number of bytes loaded
|
|
int64_t bytes(library::ConvDescription const &operation_desc) const;
|
|
|
|
/// Total number of flops computed
|
|
int64_t flops(library::ConvDescription const &operation_desc) const;
|
|
|
|
void set_default_output_size() {
|
|
p = ((h + pad_h - r * dilation_h) / stride_h) + 1;
|
|
q = ((w + pad_w - s * dilation_w) / stride_w) + 1;
|
|
}
|
|
|
|
// Returns equivalent gemm problem size for convolution
|
|
cutlass::gemm::GemmCoord eq_gemm_size(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return cutlass::gemm::GemmCoord(int(n * p * q), int(k), int(r * s * c / groups));
|
|
case library::ConvKind::kDgrad: return cutlass::gemm::GemmCoord(int(n * h * w), int(c), int(k * r * s));
|
|
case library::ConvKind::kWgrad: return cutlass::gemm::GemmCoord(int(k), int(r * s * c), int(n * p * q));
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns extent for tensor A
|
|
std::vector<int> extent_a(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return {int(n), int(h), int(w), int(c)};
|
|
case library::ConvKind::kDgrad: return {int(n), int(p), int(q), int(k)};
|
|
case library::ConvKind::kWgrad: return {int(n), int(p), int(q), int(k)};
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns extent for tensor B
|
|
std::vector<int> extent_b(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return {int(k), int(r), int(s), int(c / groups)};
|
|
case library::ConvKind::kDgrad: return {int(k), int(r), int(s), int(c)};
|
|
case library::ConvKind::kWgrad: return {int(n), int(h), int(w), int(c)};
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns extent for tensor C
|
|
std::vector<int> extent_c(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return {int(n), int(p), int(q), int(k)};
|
|
case library::ConvKind::kDgrad: return {int(n), int(h), int(w), int(c)};
|
|
case library::ConvKind::kWgrad: return {int(k), int(r), int(s), int(c)};
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns layout for equivalent gemm matrix A
|
|
library::LayoutTypeID eq_gemm_layout_a(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return library::LayoutTypeID::kRowMajor; // TN Gemm
|
|
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
|
|
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor; // NT Gemm
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns layout for equivalent gemm matrix B
|
|
library::LayoutTypeID eq_gemm_layout_b(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return library::LayoutTypeID::kColumnMajor; // TN Gemm
|
|
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
|
|
case library::ConvKind::kWgrad: return library::LayoutTypeID::kRowMajor; // NT Gemm
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns layout for equivalent gemm matrix C
|
|
library::LayoutTypeID eq_gemm_layout_c(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
// Gemm operator assumes column-major output
|
|
case library::ConvKind::kFprop:
|
|
case library::ConvKind::kDgrad:
|
|
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor;
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns leading dimenstion for equivalent gemm matrix A
|
|
int64_t eq_gemm_lda(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
|
|
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).k();
|
|
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns leading dimenstion for equivalent gemm matrix B
|
|
int64_t eq_gemm_ldb(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
|
|
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).n();
|
|
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).n();
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
|
|
// Returns leading dimenstion for equivalent gemm matrix C
|
|
int64_t eq_gemm_ldc(library::ConvKind const &conv_kind) const {
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop:
|
|
case library::ConvKind::kDgrad:
|
|
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
|
|
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Workspace used
|
|
struct Conv2dWorkspace {
|
|
|
|
/// Conv device allocations
|
|
DeviceAllocation *A;
|
|
DeviceAllocation *B;
|
|
DeviceAllocation *reordered_B;
|
|
DeviceAllocation *C;
|
|
DeviceAllocation *Computed;
|
|
DeviceAllocation *Reference;
|
|
|
|
/// Library configuration and arguments for convolution operator
|
|
library::Conv2dConfiguration configuration;
|
|
library::ConvArguments arguments;
|
|
|
|
/// Number of copies of the problem workspace which are visited sequentially during
|
|
/// profiling to avoid camping in the last level cache.
|
|
int problem_count;
|
|
|
|
/// Buffer used for the cutlass conv2d operations' host workspace
|
|
std::vector<uint8_t> host_workspace;
|
|
|
|
/// Buffer used for the cutlass operations' device workspace
|
|
DeviceAllocation device_workspace;
|
|
|
|
/// Library configuration and arguments for reduction operator
|
|
library::ReductionConfiguration reduction_configuration;
|
|
library::ReductionArguments reduction_arguments;
|
|
|
|
/// Buffer used for the cutlass reduction operations' host workspace
|
|
std::vector<uint8_t> reduction_host_workspace;
|
|
|
|
/// Host data buffers for host reference operation
|
|
/// host buffer for tensor
|
|
std::vector<uint8_t> host_tensor_a;
|
|
|
|
/// host buffer for tensor b
|
|
std::vector<uint8_t> host_tensor_b;
|
|
|
|
/// host buffer for tensor c
|
|
std::vector<uint8_t> host_tensor_c;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
Conv2dWorkspace()
|
|
: A(nullptr),
|
|
B(nullptr),
|
|
reordered_B(nullptr),
|
|
C(nullptr),
|
|
Computed(nullptr),
|
|
Reference(nullptr) {}
|
|
|
|
// Set stride vector for tensor activations, filters, output
|
|
void set_stride_vector(Conv2dProblem const &problem,
|
|
library::ConvKind const &conv_kind,
|
|
library::LayoutTypeID const &layout_a,
|
|
library::LayoutTypeID const &layout_b,
|
|
library::LayoutTypeID const &layout_c) {
|
|
std::vector<int64_t> stride_activations;
|
|
std::vector<int64_t> stride_filters;
|
|
std::vector<int64_t> stride_output;
|
|
|
|
// Strides for interleaved fprop
|
|
if (conv_kind == library::ConvKind::kFprop &&
|
|
((layout_a == library::LayoutTypeID::kTensorNC32HW32 &&
|
|
layout_b == library::LayoutTypeID::kTensorC32RSK32 &&
|
|
layout_c == library::LayoutTypeID::kTensorNC32HW32) ||
|
|
(layout_a == library::LayoutTypeID::kTensorNC64HW64 &&
|
|
layout_b == library::LayoutTypeID::kTensorC64RSK64 &&
|
|
layout_c == library::LayoutTypeID::kTensorNC64HW64))) {
|
|
int interleave =
|
|
(layout_a == library::LayoutTypeID::kTensorNC32HW32) ? 32 : 64;
|
|
|
|
stride_activations.push_back(int(problem.w) * interleave);
|
|
stride_activations.push_back(int(problem.w) * int(problem.h) *
|
|
interleave);
|
|
stride_activations.push_back(int(problem.h) * int(problem.w) *
|
|
int(problem.c));
|
|
|
|
stride_filters.push_back(int(problem.k) * interleave);
|
|
stride_filters.push_back(int(problem.k) * int(problem.s) * interleave);
|
|
stride_filters.push_back(int(problem.k) * int(problem.s) *
|
|
int(problem.r) * interleave);
|
|
|
|
stride_output.push_back(int(problem.q) * interleave);
|
|
stride_output.push_back(int(problem.q) * int(problem.p) * interleave);
|
|
stride_output.push_back(int(problem.q) * int(problem.p) *
|
|
int(problem.k));
|
|
} else {
|
|
// Strides for the rest cases
|
|
stride_activations.push_back(int(problem.c));
|
|
stride_activations.push_back(int(problem.w) * int(problem.c));
|
|
stride_activations.push_back(int(problem.h) * int(problem.w) *
|
|
int(problem.c));
|
|
|
|
stride_filters.push_back(int(problem.c / problem.groups));
|
|
stride_filters.push_back(int(problem.s) * int(problem.c / problem.groups));
|
|
stride_filters.push_back(int(problem.r) * int(problem.s) *
|
|
int(problem.c / problem.groups));
|
|
|
|
stride_output.push_back(int(problem.k));
|
|
stride_output.push_back(int(problem.q) * int(problem.k));
|
|
stride_output.push_back(int(problem.q) * int(problem.p) *
|
|
int(problem.k));
|
|
}
|
|
|
|
switch (conv_kind) {
|
|
case library::ConvKind::kFprop:
|
|
configuration.stride_a = stride_activations;
|
|
configuration.stride_b = stride_filters;
|
|
configuration.stride_c = stride_output;
|
|
|
|
break;
|
|
case library::ConvKind::kDgrad:
|
|
configuration.stride_a = stride_output;
|
|
configuration.stride_b = stride_filters;
|
|
configuration.stride_c = stride_activations;
|
|
|
|
break;
|
|
case library::ConvKind::kWgrad:
|
|
configuration.stride_a = stride_output;
|
|
configuration.stride_b = stride_activations;
|
|
configuration.stride_c = stride_filters;
|
|
|
|
break;
|
|
default:
|
|
throw std::runtime_error(
|
|
"Invalid Conv Operator (fprop, dgrad, wgrad)");
|
|
}
|
|
}
|
|
};
|
|
|
|
protected:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// CONV problem obtained from problem space
|
|
Conv2dProblem problem_;
|
|
|
|
/// Device memory allocations
|
|
Conv2dWorkspace conv_workspace_;
|
|
|
|
/// CUTLASS parallel reduction operation to follow this* conv2d operation
|
|
library::Operation const *reduction_op_;
|
|
|
|
public:
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Ctor
|
|
Conv2dOperationProfiler(Options const &options);
|
|
|
|
/// Destructor
|
|
virtual ~Conv2dOperationProfiler();
|
|
|
|
/// Prints usage statement for the math function
|
|
virtual void print_usage(std::ostream &out) const;
|
|
|
|
/// Prints examples
|
|
virtual void print_examples(std::ostream &out) const;
|
|
|
|
/// Extracts the problem dimensions
|
|
virtual Status initialize_configuration(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
/// Initializes workspace
|
|
virtual Status initialize_workspace(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
/// Verifies CUTLASS against references
|
|
virtual bool verify_cutlass(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
/// Measures performance results
|
|
virtual bool profile(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
protected:
|
|
/// Method to profile an initialized CUTLASS operation
|
|
virtual Status profile_cutlass_(
|
|
double &runtime,
|
|
Options const &options,
|
|
library::Operation const *operation,
|
|
void *arguments,
|
|
void *host_workspace,
|
|
void *device_workspace);
|
|
|
|
|
|
/// Initialize reduction problem dimenstions and library::Operation
|
|
bool initialize_reduction_configuration_(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
/// Initializes the performance result
|
|
void initialize_result_(
|
|
PerformanceResult &result,
|
|
Options const &options,
|
|
library::ConvDescription const &operation_desc,
|
|
ProblemSpace const &problem_space);
|
|
|
|
/// Verifies CUTLASS against host reference
|
|
bool verify_with_host_reference_(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
/// Verifies CUTLASS against device reference
|
|
bool verify_with_device_reference_(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
#if CUTLASS_ENABLE_CUDNN
|
|
|
|
/// Verifies CUTLASS against cudnn reference
|
|
bool verify_with_cudnn_(
|
|
Options const &options,
|
|
PerformanceReport &report,
|
|
DeviceContext &device_context,
|
|
library::Operation const *operation,
|
|
ProblemSpace const &problem_space,
|
|
ProblemSpace::Problem const &problem);
|
|
|
|
#endif //#if CUTLASS_ENABLE_CUDNN
|
|
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace profiler
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|