cutlass/include/cutlass/epilogue/thread/linear_combination_bias_relu.h
Shuai Shao ce8597dc14
Fix type bug in conv2d/gemm with broadcast (#796)
add ElementVector

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2023-02-09 20:53:25 -05:00

453 lines
13 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Functor performing linear combination operations used by epilogues.
*/
#pragma once
#include <cuda_fp16.h>
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/epilogue/thread/activation.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
template <typename Element, int ElementsPerAccess>
struct ArrayMaximum {
CUTLASS_HOST_DEVICE
Array<Element, ElementsPerAccess> operator()(
Array<Element, ElementsPerAccess> const &lhs,
Array<Element, ElementsPerAccess> const &rhs) const {
Array<Element, ElementsPerAccess> result;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < ElementsPerAccess; ++i) {
result[i] = fmax(lhs[i], rhs[i]);
}
return result;
}
};
template <int ElementsPerAccess>
struct ArrayMaximum<half_t, ElementsPerAccess> {
CUTLASS_DEVICE
Array<half_t, ElementsPerAccess> operator()(
Array<half_t, ElementsPerAccess> const &lhs,
Array<half_t, ElementsPerAccess> const &rhs) const {
Array<half_t, ElementsPerAccess> result;
#if __CUDA_ARCH__ >= 800
int const kVectorCount = ElementsPerAccess / 2;
__half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(lhs.raw_data());
__half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(rhs.raw_data());
__half2 *res_ptr = reinterpret_cast<__half2 *>(result.raw_data());
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kVectorCount; ++i) {
res_ptr[i] = __hmax2(lhs_ptr[i], rhs_ptr[i]);
}
#else
__half const *lhs_ptr = reinterpret_cast<__half const *>(lhs.raw_data());
__half const *rhs_ptr = reinterpret_cast<__half const *>(rhs.raw_data());
__half *res_ptr = reinterpret_cast<__half *>(result.raw_data());
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < ElementsPerAccess; ++i) {
res_ptr[i] = ((lhs_ptr[i] < rhs_ptr[i]) ? rhs_ptr[i] : lhs_ptr[i]);
}
#endif
return result;
}
CUTLASS_DEVICE
Array<half_t, ElementsPerAccess> operator()(
Array<half_t, ElementsPerAccess> const &lhs,
half_t const &rhs) const {
Array<half_t, ElementsPerAccess> result;
#if __CUDA_ARCH__ >= 800
int const kVectorCount = ElementsPerAccess / 2;
__half rhs_raw = reinterpret_cast<__half const &>(rhs);
__half2 rhs_pair = __half2half2(rhs_raw);
__half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(lhs.raw_data());
__half2 *res_ptr = reinterpret_cast<__half2 *>(result.raw_data());
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kVectorCount; ++i) {
res_ptr[i] = __hmax2(lhs_ptr[i], rhs_pair);
}
#else
__half const *lhs_ptr = reinterpret_cast<__half const *>(lhs.raw_data());
__half const rhs_raw = reinterpret_cast<__half const &>(rhs);
__half *res_ptr = reinterpret_cast<__half *>(result.raw_data());
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < ElementsPerAccess; ++i) {
res_ptr[i] = ((lhs_ptr[i] < rhs_raw) ? rhs_raw : lhs_ptr[i]);
}
#endif
return result;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Element, int ElementsPerAccess>
struct ReluConditional {
CUTLASS_HOST_DEVICE
void operator()(
bool conditional[],
Array<Element, ElementsPerAccess> const &fragment,
Element threshold) const {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < ElementsPerAccess; ++i) {
conditional[i] = !(fragment[i] < threshold);
}
}
};
template <int ElementsPerAccess>
struct ReluConditional<half_t, ElementsPerAccess> {
CUTLASS_DEVICE
void operator()(
bool conditional[],
Array<half_t, ElementsPerAccess> const &fragment,
half_t threshold) const {
__half y = reinterpret_cast<__half const &>(threshold);
__half const *x = reinterpret_cast<__half const *>(fragment.raw_data());
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < ElementsPerAccess; ++i) {
conditional[i] = !__hlt(x[i], y);
}
}
};
} // namespace detail
/////////////////////////////////////////////////////////////////////////////////////////////////
/// This is a partial specialization for fused Bias and ReLU. It supports the option of packing
/// ReLU conditionals in a bit vector that may be used by backwards passes as an optimization.
///
/// This class can only be used with cutlass::epilogue::threadblock::EpilogueWithBroadcast<>.
///
/// This base class is meant to define the concept required of the
/// EpilogueWithBroadcast::OutputOp
template <
typename ElementC_,
typename ElementAccumulator_,
typename ElementCompute_,
typename ElementZ_,
int ElementsPerAccess,
bool StoreT = true,
typename ElementVector_ = ElementC_
>
class LinearCombinationBiasRelu {
public:
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementZ = ElementZ_;
using ElementVector = ElementVector_;
using ElementT = uint1b_t;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using ElementwiseOp = ReLu<ElementCompute>;
using BinaryOp = plus<ElementCompute>;
// Indicates that this epilogue applies only one binary operation
static bool const kIsSingleSource = true;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementOutput, kElementsPerAccess>;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
/// If true, the 'Z' tensor is stored
static bool const kStoreZ = true;
/// If true, the 'T' tensor is stored
static bool const kStoreT = StoreT;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales source tensor
ElementCompute const *alpha_ptr; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr; ///< pointer to source scalar - if not null, loads it from memory
ElementZ threshold; ///< ReLu threshold
//
// Methods
//
//
// Methods
//
CUTLASS_HOST_DEVICE
Params():
alpha(ElementCompute(1)),
beta(ElementCompute()),
alpha_ptr(nullptr),
beta_ptr(nullptr),
threshold(ElementCompute()) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha,
ElementCompute beta,
ElementCompute threshold_ = ElementCompute()
):
alpha(alpha), beta(beta), alpha_ptr(nullptr), beta_ptr(nullptr) {
NumericConverter<ElementZ, ElementCompute> convert_threshold;
threshold = convert_threshold(threshold_);
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha
): alpha(alpha), beta(0), alpha_ptr(nullptr), beta_ptr(nullptr), threshold(ElementZ()) {
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr,
ElementCompute const *beta_ptr,
ElementCompute threshold_ = ElementCompute()
): alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {
NumericConverter<ElementZ, ElementCompute> convert_threshold;
threshold = convert_threshold(threshold_);
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr
): alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(nullptr), threshold(ElementZ()) {
}
};
private:
//
// Data members
//
ElementCompute alpha_;
ElementCompute beta_;
ElementZ threshold_;
public:
//
// Methods
//
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationBiasRelu(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
threshold_ = params.threshold;
}
/// Returns true if source is needed
CUTLASS_HOST_DEVICE
bool is_source_needed() const {
return beta_ != ElementCompute(0);
}
/// Functionally required for serial reduction in the epilogue
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
// set to NaN to make ReLU no-op for all except last k partitions
int64_t allones = -1;
threshold_ = reinterpret_cast<ElementZ const &>(allones);
}
}
/// Applies the operation when is_source_needed() is true
CUTLASS_HOST_DEVICE
void operator()(
FragmentZ &frag_Z,
FragmentT &frag_T,
FragmentAccumulator const &AB,
FragmentC const &frag_C,
FragmentCompute const &V) const {
BinaryOp binary_op;
FragmentCompute tmp_Accum = NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_C = NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(frag_C);
FragmentCompute result_Z;
bool conditions[kElementsPerAccess];
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElementsPerAccess; ++i) {
ElementCompute z = alpha_ * tmp_Accum[i];
z += beta_ * tmp_C[i];
z = binary_op(z, V[i]);
result_Z[i] = z;
}
NumericArrayConverter<ElementZ, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
//
// Compute condition
//
detail::ReluConditional<ElementZ, kElementsPerAccess> relu_conditional;
relu_conditional(conditions, frag_Z, threshold_);
detail::ArrayMaximum<ElementZ, kElementsPerAccess> maximum_op;
frag_Z = maximum_op(frag_Z, threshold_);
if (kStoreT) {
PackPredicates<kElementsPerAccess> pack_predicates;
frag_T = pack_predicates(conditions);
}
}
/// Applies the operation when is_source_needed() is false
CUTLASS_HOST_DEVICE
void operator()(
FragmentZ &frag_Z,
FragmentT &frag_T,
FragmentAccumulator const &AB,
FragmentCompute const &V) const {
BinaryOp binary_op;
FragmentCompute tmp_Accum = NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute result_Z;
bool conditions[kElementsPerAccess];
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElementsPerAccess; ++i) {
ElementCompute z = binary_op(alpha_ * tmp_Accum[i], V[i]);
result_Z[i] = z;
}
NumericArrayConverter<ElementZ, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
//
// Compute condition
//
detail::ReluConditional<ElementZ, kElementsPerAccess> relu_conditional;
relu_conditional(conditions, frag_Z, threshold_);
detail::ArrayMaximum<ElementZ, kElementsPerAccess> maximum_op;
frag_Z = maximum_op(frag_Z, threshold_);
//
// Compute conditions
//
//
// Store
//
if (kStoreT) {
PackPredicates<kElementsPerAccess> pack_predicates;
frag_T = pack_predicates(conditions);
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////