cutlass/include/cute/algorithm/tensor_algorithms.hpp
ANIKET SHIVAM d572cc1aab
CUTLASS 3.1 (#915)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-04-14 23:19:34 -04:00

124 lines
4.0 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/** Common algorithms on (hierarchical) tensors */
#pragma once
#include <cute/config.hpp>
#include <cute/tensor.hpp>
namespace cute
{
//
// for_each
//
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout> const& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
static_cast<UnaryOp&&>(op)(tensor(i));
}
}
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
static_cast<UnaryOp&&>(op)(tensor(i));
}
}
// Accept mutable temporaries
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
{
return for_each(tensor, static_cast<UnaryOp&&>(op));
}
//
// transform
//
// Similar to std::transform but does not return number of elements affected
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
tensor(i) = static_cast<UnaryOp&&>(op)(tensor(i));
}
}
// Accept mutable temporaries
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
{
return transform(tensor, std::forward<UnaryOp>(op));
}
// Similar to std::transform transforms one tensors and assigns it to another
template <class EngineIn, class LayoutIn, class EngineOut, class LayoutOut, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn,LayoutIn>& tensor_in, Tensor<EngineOut,LayoutOut>& tensor_out, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor_in); ++i) {
tensor_out(i) = static_cast<UnaryOp&&>(op)(tensor_in(i));
}
}
// Accept mutable temporaries
template <class EngineIn, class LayoutIn, class EngineOut, class LayoutOut, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn,LayoutIn>&& tensor_in, Tensor<EngineOut,LayoutOut>&& tensor_out, UnaryOp&& op)
{
return transform(tensor_in, tensor_out, std::forward<UnaryOp>(op));
}
} // end namespace cute